Faculty of Physics and Mathematics, University of Latvia Zellu iela 8, LV-1002 Riga, Latvia; University of Latvia Raina bulvaris 29, LV-1459 Riga, Latvia
Dynamics and hysteresis of an elongated droplet under the action of a rotating magnetic field is considered for mathematical modelling. The shape of droplet is found by regularization of the ill-posed initial–boundary value problem for nonlinear partial differential equation (PDE). It is shown that two methods of the regularization – introduction of small viscous bending torques and construction of monotonous continuous functions are equivalent. Their connection with the regularization of the ill-posed reverse problems for the parabolic equation of heat conduction is remarked.
Spatial discretization is carried out by the finite difference scheme (FDS). Time evolution of numerical solutions is obtained using method of lines for solving a large system of ordinary differential equations (ODE).
Cebers, A., & Kalis, H. (2013). Numerical simulation of magnetic droplet dynamics in a rotating field. Mathematical Modelling and Analysis, 18(1), 80-96. https://doi.org/10.3846/13926292.2013.756835
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.