In this paper the one- and two-dimensional pseudoparabolic equations with nonlocal boundary conditions are approximated by the Euler finite difference scheme. In the case of classical boundary conditions the stability of all schemes is investigated by the spectral method. Stability regions of finite difference schemes approximating pseudoparabolic problem are compared with the stability regions of the classical discrete parabolic problem. These results are generalized for problems with nonlocal boundary conditions if a matrix of the finite difference scheme can be diagonalized. For the two-dimensional problem an efficient algorithm is constructed, which is based on the combination of the FFT method and the factorization algorithm. General stability results, known for the three level finite difference schemes, are applied to investigate the stability of some explicit approximations of the two-dimensional pseudoparabolic problem with classical boundary conditions. A connection between the energy method stability conditions and the spectrum Hurwitz stability criterion is shown. The obtained results can be applied for pseudoparabolic problems with nonlocal boundary conditions, if a matrix of the finite difference scheme can be diagonalized.
Čiegis, R., & Tumanova, N. (2014). On Construction and Analysis of Finite Difference Schemes for Pseudoparabolic Problems with Nonlocal Boundary Conditions. Mathematical Modelling and Analysis, 19(2), 281-297. https://doi.org/10.3846/13926292.2014.910562
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.