School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062, China; School of Science, Hubei University For Nationalities, Enshi, 445000, China
The success of integrated pest management (IPM) depends on spraying the correct amount of pesticides at an appropriate time and releases of natural enemies or pathogens of the pest in appropriate proportions at critical times, with little cost and minimal effects on the environment. Therefore, control decisions require information on instantaneous killing rates of pesticides and numbers of natural enemies to be released, variables that should depend on the densities of both pest and natural enemy population densities in the field. To describe such a control strategy we have proposed a mathematical model of IPM involving releases of natural enemies in relation to a regulatory factor. The threshold condition for the existence and stability of the pest free periodic solution is provided using a cobweb model, the comparison principle and Floquet theory, which reveals the effects of nonlinear control actions on pest outbreaks. Bifurcation analyses show that the dynamics of the proposed model can be very complex, including multiple attractors and switch-like transition patterns following small random perturbations. Moreover, the random perturbations and nonlinear impulsive control measures could generate complex switching patterns, which show that the pest population could have outbreaks in complex ways due to environmental noise.
Tian, Y., Tang, S., & Cheke, R. A. (2019). Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases. Mathematical Modelling and Analysis, 24(1), 134-154. https://doi.org/10.3846/mma.2019.010
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.