In this paper, a modified method of characteristics variational multiscale (MMOCVMS) finite element method is presented for the time dependent NavierStokes problems, which is leaded by combining the characteristics time discretization with the variational multiscale (VMS) finite element method in space. The theoretical analysis shows that this method has a good convergence property. In order to show the efficiency of the MMOCVMS finite element method, some numerical results of analytical solution problems are presented. First, we give some numerical results of lid-driven cavity flow with Re = 5000 and 7500 as the time is sufficient long. From the numerical results, we can see that the steady state numerical solutions of the time-dependent Navier-Stokes equations are obtained. Then, we choose Re = 10000, and we find that the steady state numerical solution is not stable from t = 200 to 300. Moreover, we also investigate numerically the flow around a cylinder problems. The numerical results show that our method is highly efficient.
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in the above named journal, Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.