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Abstract. The main problem with the Newton method is the compu-

tation of the inverse of the first derivative of the operator involved

at each iteration step. Thus, when we want to apply the New-

ton method directly to solve an integral equation, the existence of

the inverse of the first derivative is guaranteed, when the kernel is

sufficiently differentiable into any of its two components, through

its approximation by Taylor’s polynomial. In this paper, we study

the case in which the kernel is not differentiable in any of its two

components. So, we present a strategy that consists of approximat-

ing the kernel of the nonlinear integral equation by a Chebyshev

interpolation polynomial, which is separable. This allows us to ex-

plicitly calculate the inverse of the first derivative operator in each

step of the Newton method and then approximate a solution of the

approximate integral equation.
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1 Introduction

Many problems that appear in Physics or Engineering are usually solved by
methods for differential equations, but they can be solved, in some cases, more
efficiently by methods of integral equations. For this, in recent years, papers
have increasingly appeared for solving integral equations that provide meth-
ods for solving problems that until now could not be solved using standard
methods of differential equations. These problems usually appear in applied
mathematics, mathematical physics and other branches of science.

It is known that an integral equation is an equation in which the unknown
function to be determined appears under the integral sign. In this work, we
focus on the study of nonlinear integral equations of Fredholm of the second
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kind of the form

ϕ(x) = f(x) + λ

∫ b

a

K(x, t)H(ϕ)(t) dt, x ∈ [a, b], (1.1)

where λ is a given fixed real number, f ∈ C[a, b], the kernel K is a known
function in [a, b]× [a, b], H is the Nemytskii operator H : C[a, b] → C[a, b] such
that H(ϕ)(x) = H(ϕ(x)), where H : R → R, and ϕ : [a, b] → R is the unknown
function to be determined.

The numerical solution of nonlinear integral equations of the form (1.1)
has two fundamental aspects. On the one hand, Equation (1.1) is discretized
to obtain a solution ϕ(x) of the problem at the discretization points, so that
we obtain a finite dimensional solution of the problem. Thus, we can find
the projection methods, being the collocation and Garlekin methods the most
common (see [10,11]), as well as the Nystrom methods (see [17]).

On the other hand, there are iteration methods that, unlike the previous
ones, approach the problem in an infinte-dimensional way, obtaining a func-
tion as a solution. Among these, the Picard method or fixed point iteration
and Broyden’s method stand out (see [3]), but the best known is the Newton
method,

ϕn+1 = ϕn − [T ′(ϕn)]
−1T (ϕn), n ≥ 0, with ϕ0 given, (1.2)

to solve the equation T (ϕ) = 0. The main problem with the Newton method
is the calculation of [T ′(ϕn)]

−1 in each step, which has been tried to solve
by modifying the method in different ways [13, 14, 15]. In [7], the idea of
constructing a Newton-type method by approximating T ′(ϕn) is used. For this,
it is used the idea that the operator [T ′(ϕn)]

−1 can be explicitly calculated when
the integral kernel is separable, that is, there are real functions ℓi, ϖi ∈ C[a, b]
such that K(x, t) =

∑m
i=1 ℓi(x)ϖi(t). Thus, when the kernel is sufficiently

differentiable into one of its two components, we can approximate the kernel
using a separable kernel by applying Taylor’s polynomial on that component.

Following the previous idea, in this work, we approximate an equation
F(ϕ) = 0, where F : Ω ⊆ C[a, b] → C[a, b] and

[F(ϕ)](x) = ϕ(x)− f(x)− λ

∫ b

a

K(x, t)H(ϕ)(t) dt, x ∈ [a, b],

by an equation G(ϕ) = 0, so that, if ϕ∗ is a solution of the equation F(ϕ) = 0

and ϕ̃ is a solution of the equation G(ϕ) = 0, the two solutions are as close as
we want. For this, we consider G : Ω ⊆ C[a, b] → C[a, b] with

[G(ϕ)](x) = ϕ(x)− f(x)− λ

∫ b

a

pm(x, t)H(ϕ)(t) dt, x ∈ [a, b], (1.3)

where pm is a polynomial of degreem and such that max
a≤t≤b

{
|K(x, t)− pm(x, t)|

}
,

for each x ∈ [a, b], is a small enough quantity. So, we can approximate a so-
lution of the equation F(ϕ) = 0 in an infinite-dimensional way. To construct
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pm, we consider the interpolation polynomial for the function K(x, t), fixed
x ∈ [a, b], using Chebyshev nodes. In this way, we know that we avoid the
well-known Runge phenomenon by increasing the number of nodes.

Besides, as Trefethen indicates in his paper [18], the convergence of the
interpolation polynomial is guaranteed for interpolation in Chebyshev points
so long as the function involved is somewhat smooth, e.g., Lipschitz con-
tinuous. More precisely, it is sufficient for the function to satisfy a Dini-
Lipschitz condition [16]. Then, in this case, there exists m ∈ N such that
maxa≤t≤b

{
|K(x, t)− pm(x, t)|

}
is as small as we want.

The paper is organized as follows. In Section 2, we present the problem
statement, where we approximate the kernel K of the original integral equa-
tion (1.1) by a separable kernel using a polynomial pm obtained from the in-
terpolation of Chebyshev. In Section 3, we examine the convergence of the
Newton method under a Lipschitz condition on the first derivative of the im-
plicated operator and the technique of majorizing sequences. In Section 4, we
obtain a result on the uniqueness of solution. In Section 5, we provide an
algorithm of the Newton method that can be easily applied to the problem
presented here. Finally, in Section 6, we illustrate the previous study with two
examples.

Throughout the paper, we denote B(ϕ, ϱ) = {ν ∈ C[a, b]; ∥ν − ϕ∥ ≤ ϱ},
B(ϕ, ϱ) = {ν ∈ C[a, b]; ∥ν − ϕ∥ < ϱ} and the set of bounded linear operators
from C[a, b] to C[a, b] by L(C[a, b], C[a, b]), and use the infinity norm in C[a, b].

2 Problem statement

In [7], the authors impose the condition that the kernel is sufficiently differen-
tiable in any of the components. In this work, we only require that the kernel be
continuous in the two components. Thus, we can consider situations in which
the kernel K is not sufficiently differentiable in either of its two components,
that are not contemplated in [7]. For this, we use a Chebyshev interpolation
polynomial, pm, instead of a Taylor polynomial to approximate the kernel (as
it is done in [7]).

Thus, it is known ( [9, 12]) that given the i-th Chebyshev polynomial in
[−1, 1],

Ti(t) = cos (i arccos t) ,

and the continuous kernel K : [a, b] × [a, b] → R, the Chebyshev interpolation
polynomial that fits the data K(x, tj), with j = 0, 1, . . . ,m, is given by

pm(x, t) =

m∑
i=0

ci(x)Ti

(
2t− b− a

b− a

)
=

m∑
i=0

ci(x)T̃i(t), (2.1)

where T̃i(t) = Ti

(
2t−b−a
b−a

)
and

ci(x) =
2− γi0
m+ 1

m∑
j=0

K(x, tj)Ti

(
2tj − b− a

b− a

)
=

2− γi0
m+ 1

m∑
j=0

K(x, tj)T̃i(tj),
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with γ00 = 1, γi0 = 0 if i ̸= 0 and tj =
a+b
2 + b−a

2 cos
(

2j+1
2(m+1) π

)
are the zeros

of the polynomials of Chebyshev in [a, b].
So, we consider the integral equation

ϕ(x) = f(x) + λ

∫ b

a

pm(x, t)H(ϕ)(t) dt, x ∈ [a, b], (2.2)

whose kernel is separable, and the operator G given in (1.3) with pm defined
in (2.1). Obviously, a zero of this G is a solution of (2.2). Besides, as the kernel
pm is separable, we can explicitly obtain [G′(ϕ)]−1, so that we can apply the
Newton method to approximate a solution of the equation G(ϕ) = 0 and, as a
consequence, a solution of (2.2).

Evidently, our aim is to guarantee that both equations F(ϕ) = 0 and
G(ϕ) = 0 are as close as we want. This depends on the adjustment we make
of the kernel K through the polynomial pm and this in turn depends on the
Chebyshev polynomial considered. This fact has caused us to consider this type
of interpolation because it smooths out the oscillations that occur in the inter-
polation polynomial by increasing its degree, also obtaining the convergence of
Chebyshev’s polynomial to the kernel K in the variable considered.

3 On the convergence of the Newton method

First, we need to be able to define [G′(ϕ)]−1 in order to apply the Newton
method to the operator (1.3) with pm defined in (2.1), so that we need the
kernel of (2.2) to be separable. As pm is separable, we can write the operator
G as

[G(ϕ)](x) = ϕ(x)− f(x)− λ

m∑
i=0

ci(x)

∫ b

a

T̃i(t)H(ϕ)(t) dt.

Moreover,

[G′(ϕ)φ](x) = φ(x)− λ

m∑
i=0

ci(x)

∫ b

a

T̃i(t)[H′(ϕ)φ](t) dt. (3.1)

So, we consider the Newton method,

ϕn+1 = ϕn − [G′(ϕn)]
−1G(ϕn), n ≥ 0, with ϕ0 given in C[a, b], (3.2)

to approximate a solution of the equation G(ϕ) = 0. Then, our next aim is to
prove the convergence of the Newton method.

For the convergence of the Newton method, we suppose that the first deriva-
tive of the Nemystkii operator is Lipschitz continuous in a domain Ω ⊆ C[a, b],

∥H′(ϕ)−H′(φ)∥ ≤ L∥ϕ− φ∥, L ≥ 0, ϕ, φ ∈ Ω. (3.3)

Besides, given ϕ0 ∈ Ω and taking into account that
∣∣∣T̃i(t)

∣∣∣ ≤ 1, for i =

0, 1, . . . ,m, and
∥I − G′(ϕ0)∥ ≤ |λ|C(b− a)∥H′(ϕ0)∥,
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where C = maxa≤x≤b

∑m
i=0 |ci(x)|, it follows, by the Banach lemma on in-

vertible operators, that there exits [G′(ϕ0)]
−1 such that ∥[G′(ϕ0)]

−1∥ ≤ β and
∥[G′(ϕ0)]

−1G(ϕ0)∥ ≤ η, where

β =
1

1−Q∥H′(ϕ0)∥
, η =

∥ϕ0 − f∥+Q∥H(ϕ0)∥
1−Q∥H′(ϕ0)∥

, (3.4)

with Q = |λ|C(b− a) and provided that ∥H′(ϕ0)∥ < 1
Q .

After that, we see in the following result that G is a Lipschitz continuous
operator in Ω. The proof is immediate from (3.3).

Lemma 1. From (3.1), (3.3) and Q = |λ|C(b− a), it follows

∥G′(ϕ)− G′(φ)∥ ≤ QL∥ϕ− φ∥, for ϕ, φ ∈ Ω.

To prove the convergence of the Newton method (3.2), we use a modification
of Kantorovich’s method of majorizing sequences [4] and, in particular, the
simple majorizing sequences defined in [5]. So, a sequence of positive real
numbers {αn} such that

∑
n≥0 αn = α∗ < +∞ is said to be a majorizing

squence of the sequence {ϕn} if

∥ϕn+1 − ϕn∥ ≤ αn, n ≥ 0.

In addition, we remember the following result that is given in [5].

Theorem 1. If {αn} is a majorizing sequence of (3.2), then the sequence (3.2)

converges to ϕ̃ and ϕn, ϕ̃ ∈ B(ϕ0, α∗) with α∗ =
∑

n≥0 αn.

The next step is then to construct the majorizing sequence {αn}. For this,
we consider the following auxiliary sequence of real numbers {δn}:

δ0 = QLβη, δn =
δ2n−1

2(1− δn−1)2
, n ∈ N, (3.5)

and define the sequence of real numbers

α0 = η, αn =
δn−1αn−1

2(1− δn−1)
, n ∈ N.

Besides, we have the next lemma that is used later.

Lemma 2. If ϕn, ϕn+1 ∈ Ω and δn < 1, for all n ≥ 0, we obtain, for n ∈ N,
the following recurrence relations:

(In) QL∥[G′(ϕn−1)]
−1∥∥ϕn − ϕn−1∥ ≤ δn−1,

(IIn) ∥[G′(ϕn)]
−1∥ ≤ 1

1− δn−1
∥[G′(ϕn−1)]

−1∥,

(IIIn) ∥[G(ϕn)]∥ ≤ 1

2
QL∥ϕn − ϕn−1∥2,
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(IVn) ∥ϕn+1 − ϕn∥ ≤ αn.

Proof. Item (I1) is obvious. To prove (II1), we observe that

∥I − [G′(ϕ0)]
−1G′(ϕ1)∥ ≤ QLβ∥ϕ1 − ϕ0∥ ≤ δ0

and, provided that δ0 < 1, we have that the operator [G′(ϕ1)]
−1 exists and

∥[G′(ϕ1)]
−1∥ ≤ 1

1−δ0
∥[G′(ϕ0)]

−1∥ as a consequence of the Banach lemma on
invertible operators.

From (3.2), we have

G(ϕ0) + G′(ϕ0)(ϕ1 − ϕ0) = 0

and, from the Taylor series,

G(ϕ1) =

∫ 1

0

(
G′(ϕ0 + τ(ϕ1 − ϕ0))− G′(ϕ0)

)
(ϕ1 − ϕ0) dτ,

so that (III1) follows from Lemma 1.
To prove (IV1), we apply (II1) and (III1) as follows:

∥ϕ2 − ϕ1∥ ≤ ∥[G′(ϕ1)]
−1∥∥G(ϕ1)∥ ≤ δ0

2(1− δ0)
∥ϕ1 − ϕ0∥ ≤ δ0α0

2(1− δ0)
= α1.

Finally, by mathematical induction on n, it follows (In)-(IIn)-(IIIn)-(IVn)
for all n ∈ N. ⊓⊔

We have just seen in the previous lemma that the restriction δn < 1, for all
n ∈ N, is required on the sequence {δn} and we also have to guarantee that∑

n≥0 αn = α∗ < +∞. In the following result we study the real sequences of
positive numbers {δn} and {αn}.

Lemma 3. If δ0 < 1
2 , then

(a) the sequence {δn} is decreasing,

(b) αn ≤
(

δ0
2(1− δ0)

)n

α0,

(c)
∑
n≥0

αn ≤
∑
n≥0

(
δ0

2(1− δ0)

)n

α0 =
2(1− δ0)α0

2− 3δ0
.

Proof. First, we use mathematical induction. As δ0 < 1
2 , then δ1 < δ0. If

δk < δk−1, for k = 0, 1, . . . , n − 1, then δn < δn−1, since δn = h(δn−1)
2

2 with
h(t) = t

1−t and h(t) > 0 and h′(t) > 0 in
[
0, 1

2

)
.

Second,

αn =

(
δn−1

2(1− δn−1)

)
αn−1 ≤

(
δ0

2(1− δ0)

)
αn−1 ≤ · · · ≤

(
δ0

2(1− δ0)

)n

α0.
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Third, ∑
n≥0

αn ≤
∑
n≥0

(
δ0

2(1− δ0)

)n

α0 =
2(1− δ0)α0

2− 3δ0
,

since δ0
2(1−δ0)

< 1. ⊓⊔

Then, by the last lemma, we have a sequence of positive real numbers {αn}
with

∑
n≥0 αn = α∗ = 2(1−δ0)α0

2−3δ0
and, by Lemma 2, such that

∥ϕn − ϕn−1∥ ≤ αn ≤
(

δ0
2(1− δ0)

)n

α0.

Therefore, by Theorem 1, the Newton sequence (3.2) converges to ϕ̃ if {ϕn} ⊂ Ω
and δ0 < 1

2 . So, we can prove the next result on the convergence of the Newton
sequence {ϕn}.

Theorem 2. Let G : Ω ⊆ C[a, b] → C[a, b], where Ω is an open convex non-
empty set. If the condition (3.3) holds, there exists some ϕ0 ∈ Ω such that
∥H′(ϕ0)∥ ≤ 1

Q and δ0 < 1
2 , where β and η are given in (3.4), and B (ϕ0, α

∗) ⊂
Ω with α∗ = 2(1−δ0)α0

2−3δ0
, then the Newton sequence, given by (3.2), is convergent

to a solution ϕ̃ of G(ϕ) = 0. Moreover, ϕn, ϕ̃ ∈ B (ϕ0, α∗), for all n ∈ N.

Proof. On the one hand, we observe that

∥ϕn − ϕ0∥ ≤
n−1∑
i=0

∥ϕi+1 − ϕi∥ <

n−1∑
i=0

αi <
2(1− δ0)

2− 3δ0
η = α∗,

for all n ∈ N. Therefore, {ϕn} ⊂ Ω. On the other hand, as δ0 < 1
2 , there exists

ϕ̃ such that ϕ̃ = limn ϕn. In addition, from the item (IIIn) of Lemma 2, we

have G(ϕ̃) = 0 by continuity, since limn ∥ϕn+1 − ϕn∥ = 0. ⊓⊔

Next, we prove the quadratic convergence of the Newton method (3.2). For
this, we use the concept of R-order of convergence [4].

Theorem 3. Under the conditions of Theorem 2, the Newton sequence (3.2)
hast R-order of convergence at least two.

Proof. Consider the real functions u(t) = 1
1−t and v(t) = t

2 . Then, from (3.5),

we can write δ0 = QLβη, δn = δn−1u(δn−1)
2v(δn−1), n ≥ 1. If we denote b = δ1

δ0

and take into account δ0 < 1
2 , it follows

δn < b2
n−1

δn−1 and δn < b2
n−1δ0, for n ≥ 2.

Observe also that b < 1, since u(δ0)
2v(δ0) < 1 as a consequence of δ0 < 1

2 .
Indeed, we prove the last by mathematical induction on n. As u is an increasing
function, we have

δ2 = δ1u(δ1)
2v(δ1) = bδ0u(bδ0)

2v(bδ0) < b2δ1 = b3δ0.
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Next, we suppose that δn−1 < b2
n−2

δn−2 < b2
n−1δ0. Then,

δn =δn−1u(δn−1)
2v(δn−1) < b2

n−2

δn−2 u
(
b2

n−2

δn−2

)2

v
(
b2

n−2

δn−2

)
<b2

n−1

δn−1 < b2
n−1

b2
n−2

δn−2 < · · · < b2
n−1δ0.

After that, if we proceed as in Lemma 2, it is easy to prove by mathematical
induction that the following holds:

∥ϕn − ϕn−1∥ ≤ u(δn−1)v(δn−1)∥ϕn−1 − ϕn−2∥, n ≥ 2.

In addition, for m ≥ 1 and n ≥ 1, we obtain

∥ϕn+m − ϕn∥ ≤
n+m−1∑

i=n

∥ϕi+1 − ϕi∥

≤
(
1 +

n+m−2∑
i=n

( i∏
j=n

u(δj)v(δj)

))
∥ϕn+1 − ϕn∥

≤
n+m−2∑
i=n−1

( i∏
j=0

u(δj)v(δj)

)
∥ϕ1 − ϕ0∥

<

n+m−2∑
i=n−1

( i∏
j=0

b2
j−1u(δ0)v(δ0)

)
∥ϕ1 − ϕ0∥ =

n+m−2∑
i=n−1

( i∏
j=0

(
b2

j

∆
))

∥ϕ1 − ϕ0∥

=

n+m−2∑
i=n−1

(
b2

1+i−1∆1+i
)
∥ϕ1 − ϕ0∥ =

m−1∑
i=0

(
b2

n+i−1∆n+i
)
∥ϕ1 − ϕ0∥,

where ∆ = 1− δ0 < 1. Now, by applying the Bernouilli inequality,
b2

n+i−1 = b2
n−1b2

n(2i−1) ≤ b2
n−1b2

ni, it follows

∥ϕn+m−ϕn∥<
(m−1∑

i=0

b2
ni∆i

)
b2

n−1∆n∥ϕ1−ϕ0∥<
1−

(
b2

n

∆
)m

1−b2n∆
b2

n−1∆n∥ϕ1−ϕ0∥.

So, as m → ∞, we have

∥ϕ∗ − ϕn∥ <
(
b2

n−1
) ∆n

1− b2n∆
∥ϕ1 − ϕ0∥ < b2

n ∥ϕ1 − ϕ0∥
b(1−∆)

and then the R-quadratic convergence of the method (3.2) follows. ⊓⊔

4 Uniqueness of solution

Once a solution of the equation G(ϕ) = 0 is located by Theorem 2 in B (ϕ0, α∗),
we now separate it from other possible solutions by the following result of
uniqueness of solution.

Theorem 4. Under the hypotheses of Theorem 2, the solution ϕ̃ of G(ϕ) = 0

is unique in B(ϕ0, r) ∩Ω, where r = 2
L

(
1

|λ|C(b−a) − ∥H′(ϕ0)∥
)
− α∗ and C =

maxa≤x≤b

∑m
i=0 |ci(x)|.
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Proof. We suppose that ζ is another solution of the equation G(ϕ) = 0 in
B(ϕ0, r) ∩Ω. Thus,

0 = G(ζ)− G(ϕ̃) =
(∫ 1

0

G′(ϕ̃+ τ(ζ − ϕ̃)) dτ

)
(ζ − ϕ̃) = Ψ(ζ − ϕ̃).

Now, if the operator Ψ =
∫ 1

0
G′(ϕ̃+ τ(ζ − ϕ̃)) dτ is invertible, then ζ = ϕ̃. We

can deduce the last from the Banach lemma on invertible operators, provided
that ∥I − Ψ∥ < 1. Observe that

[(I − Ψ)z](x) =

((∫ 1

0

(I − G′(ϕ̃+ τ(ζ − ϕ̃)))dτ

)
z

)
(x)

= λ

m∑
i=0

ci(x)

(∫ 1

0

(∫ b

a

T̃i(t)[H′(ϕ̃+ τ(ζ − ϕ̃))z](t) dt

)
dτ

)
,

∥I − Ψ∥ ≤ |λ|C
∫ 1

0

∫ b

a

∥H′(ϕ̃+ τ(ζ − ϕ̃)))∥ dt dτ

< |λ|C(b− a)

∫ 1

0

(
∥H′(ϕ0)∥+ L(α∗ + τ(r − α∗))

)
dτ

= |λ|C(b− a)

(
∥H′(ϕ0)∥+

L

2
(r + α∗)

)
= 1

and the proof is then complete. ⊓⊔

Besides, we obtain that the solution is unique in B(ϕ0, α∗) provided that
|λ|C(b− a)

(
∥H′(ϕ0)∥+ Lα∗) < 1.

5 A simple algorithm of the Newton method

Our next aim is to find a simple algorithm to apply the Newton method to the
operator G. This is possible due to the separable approximation that we make
of the integral kernel K by means of the Chebyshev interpolation polynomial
pm, since the latter allows us to define an operator G whose integral kernel is
separable.

So, taking into account (3.1), if [G′(ϕ)φ](x) = w(x), then,

φ(x) =
(
G′(ϕ)−1w

)
(x) = w(x) + λ

m∑
i=0

ci(x)Ii, (5.1)

where Ii=
∫ b

a
T̃i(t)[H′(ϕ)φ](t)dt. Note that we can obtain Ii, for i=0, 1, . . . ,m,

based on ϕ and w. For this, we map T̃k(x)H′(ϕ) in (5.1) and integrate as
follows: ∫ b

a

T̃k(x)[H′(ϕ)φ](x) dx =

∫ b

a

T̃k(x)[H′(ϕ)w](x) dx

+ λ

m∑
i=0

∫ b

a

T̃k(x)[H′(ϕ)ci](x) dx Ii.
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Thus,

Ik = bk(ϕ,w) + λ

m∑
i=0

aki(ϕ) Ii, (5.2)

where

aki(ϕ) =

∫ b

a

T̃k(x)[H′(ϕ)ci](x) dx, bk(ϕ,w) =

∫ b

a

T̃k(x)[H′(ϕ)w](x) dx.

Observe that (5.2), with k = 0, 1, . . . ,m, is the linear system of m + 1
equations with m+ 1 unknowns given by

1−λa00(ϕ) −λa01(ϕ) −λa02(ϕ) · · · −λa0m(ϕ)

−λa10(ϕ) 1−λa11(ϕ) −λa12(ϕ) · · · −λa1m(ϕ)

−λa20(ϕ) −λa21(ϕ) 1−λa22(ϕ) · · · −λa2m(ϕ)

..

.
...

...
. . .

...

−λam0(ϕ) −λam1(ϕ) −λam2(ϕ) · · · 1−λamm(ϕ)





I0
I1
I2
...

Im


=



b0(ϕ,w)

b1(ϕ,w)

b2(ϕ,w)

...

bm(ϕ,w)


,

(5.3)

that is represented in matrix form by

M(ϕ)IT = b(ϕ,w)T ,

where I = (I0, I1, . . . , Im) and b(ϕ,w) = (b0(ϕ,w), b1(ϕ,w), . . . , bm(ϕ,w)).
Therefore, if M(ϕ)−1 exists, then there exists a unique solution of the lineal
system (5.3) and we can write(

G′(ϕ)−1w
)
(x) = w(x) + λC(x)IT ,

with C(x) = (c0(x), c1(x), . . . , cm(x)) and x ∈ [a, b].
Taking into account the last, we can consider the following simple algorithm

to apply the Newton method to approximate a solution of the equation G(ϕ) =
0:

Step 1. Given ϕ0 ∈ Ω such that ∥H′(ϕ0)∥ ≤ 1
Q and δ0 = QLβη <

1
2 , calculate

di(ϕn) =

∫ b

a

T̃i(t)H(ϕn)(t) dt, for i = 0, 1, . . . ,m,

G(ϕn)(x) = ϕn(x)− f(x)− λC(x)D(ϕn)
T , x ∈ [a, b],

with D(ϕn) = (d0(ϕn), d1(ϕn), . . . , dm(ϕn)).

Step 2. Calculate

aki(ϕn) =

∫ b

a

T̃k(x)[H′(ϕn)ci](x) dx, 0 ≤ k, i ≤ m,

bk(ϕn,G(ϕn)) =

∫ b

a

T̃k(x)[H′(ϕn)G(ϕn)](x) dx, 0 ≤ k ≤ m.
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Step 3. Solve (5.3) for ϕ = ϕn.

Step 4. Calculate

ϕn+1(x) = ϕn(x)− G(ϕn)(x)− λC(x)IT , x ∈ [a, b].

Notice that unlike the methods of discretization used by other authors, in
this case, the iterations are continuous functions that approximate a solution
of the equation G(ϕ) = 0.

Besides, as we have indicated previously, if the matrix M(ϕn)
−1 exists,

the linear system (5.3) for ϕ = ϕn has the solution I. We see below that the
existence ofM(ϕn)

−1 is guaranteed under the condition ∥H′(ϕ0)∥ < 1
Q required

to the starting function ϕ0. First, we introduce the following technical lemma.

Lemma 4. If ∥H′(ϕ0)∥ < 1/Q, for ϕ0 ∈ Ω, then there exists M(ϕ0)
−1 and

∥M(ϕ0)
−1∥ ≤ 1

1−Q∥H′(ϕ0)∥ = β.

Proof. As ∥H′(ϕ0)∥ < 1/Q, it follows

∥I −M(ϕ0)∥ ≤ |λ| max
0≤k≤m

m∑
i=0

|aki(ϕ0)|

≤ |λ| max
0≤k≤m

m∑
i=0

∫ b

a

∣∣∣T̃k(x)
∣∣∣ ∣∣[H′(ϕ0)ci](x)

∣∣ dx ≤ |λ|C(b−a)∥H′(ϕ0)∥ < 1.

Therefore, M(ϕ0)
−1 exists and ∥M(ϕ0)

−1∥ ≤ β. ⊓⊔

Now, we are ready to prove the existence of the matrix M(ϕn)
−1, for all

n ≥ 0.

Theorem 5. Under the hypotheses of Theorem 2, there exists M(ϕn)
−1, for

all n ≥ 0.

Proof. From Lemma 4 and

∥I −M(ϕ0)
−1
M(ϕ1)∥ ≤ ∥M(ϕ0)

−1∥∥M(ϕ0)−M(ϕ1)∥
≤ |λ|∥M(ϕ0)

−1∥ max
0≤k≤m

∣∣aki(ϕ1)− aki(ϕ0)
∣∣

≤ QL∥M(ϕ0)
−1∥∥ϕ1 − ϕ0∥ ≤ δ0 < 1,

it follows that M(ϕ1)
−1 exists and ∥M(ϕ1)

−1∥ ≤ ∥M(ϕ0)
−1∥

1−δ0
.

Now, we suppose that there existsM(ϕk)
−1 and ∥M(ϕk)

−1∥ ≤ ∥M(ϕk−1)
−1∥

1−δk−1
,

for all k = 1, 2, . . . , n. Thus, by mathematical induction on n, we have

∥I −M(ϕn)
−1
M(ϕn+1)∥ ≤ ∥M(ϕn)

−1∥∥M(ϕn)−M(ϕn+1)∥
≤ QL∥M(ϕn)

−1∥∥ϕn+1 − ϕn∥ ≤ δn < 1,

since {δn} is a decreasing function. As a consequence, there existsM(ϕn+1)
−1.

⊓⊔
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Therefore, the algorithm of the Newton method defined previously is well
defined. Moreover, provided that the conditions of Theorem 2 are satisfied,
the Newton sequence (3.2) converges to a solution ϕ̃ of the equation G(ϕ) = 0.
Note that the integrals that appear in the second step of the algorithm are
approximations obtained with the Gauss numerical integration formula.

6 Examples

In this section, we present two examples that illustrate the previous study.
In the first, the kernel K of (1.1) is non-separable and is non-differentiable in
either of the two components, so we cannot approximate the kernel by a Taylor
polynomial and then use the technique presented in this work. In the second,
the kernel K of the integral equation (1.1) is non-separable but sufficiently
differentiable into any of its two components. Then, we see that even in this
situation our technique is competitive with respect to the application of the
technique based on Taylor’s polynomial.

Example 1. Consider the nonlinear integral equation

ϕ(x) = f(x) +
1

2

∫ 1

0

|x− t|
(
ϕ(t)

5

)2

dt, x ∈ [0, 1],

with f(x) = 1
600

(
−2x4 + 604x− 3

)
, such that ϕ∗(x) = x is an exact solution.

As the kernel of the integral equation K(x, t) = |x − t| is non-separable
and non-differentiable in any of its two components, we cannot approximate it
by a Taylor series (something that is usually common when the kernel of the
integral equation is separable [6]). But we observe that the kernel is Lipschitz
continuous in the variable t, since ∥K(x, t)−K(x, s)∥ ≤ |t−s|, for s, t, x ∈ [0, 1].
Then, once x ∈ [0, 1] is fixed, the polynomial pm converges to the kernel K, so
that there exists m ∈ N such that maxt∈[0,1]

{
|K(x, t)− pm(x, t)|

}
is as small

as we want. If we use, for example, the polynomial (2.1) with m = 5, then the
polynomial is not a good approximation of the kernel K(x, t) = |x − t|, as we
can see in Figure 1, so we increase the value of m up to m = 30 to obtain a
good approximation of K, as we can see in Figure 2. Hence, we contemplate
the integral equation

ϕ(x) =
1

600

(
−2x4 + 604x− 3

)
+

1

50

∫ 1

0

p30(x, t)ϕ(t)
2 dt, x ∈ [0, 1]. (6.1)

Figure 1. K(x, t) and p5(x, t) for x = 1
4
, 1
2
, 3
4
, respectively.
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Figure 2. K(x, t) and p30(x, t) for x = 1
4
, 1
2
, 3
4
, respectively.

Observe that the solution ϕ∗(x) can be located previously in a domain Ω,
since it satisfies

∥ϕ∗(x)∥ − 1

600
∥ − 2x4 + 604x− 3∥ − 1

50
max

0≤x,t≤1

{∫ 1

0

|x− t|dt
}
∥ϕ∗(t)∥2

≤ ∥ϕ∗(x)∥ − (0.9983 . . .)− (0.1)∥ϕ∗(t)∥2 ≤ 0,

which holds provided that ∥ϕ∗(x)∥ ≤ 1.0085 . . . As a consequence, the ball
Ω = B(0, r∗), with r∗ = 1.0085 . . ., contains ϕ∗(x).

The convergence of the Newton method is guaranteed from Theorem 2.
As L = 2 and Q = 0.02, we can choose a starting function ϕ0(x) such that
∥H′(ϕ0)∥ ≤ 1

Q = 50. For this, we choose, as it is usually done, the starting

function ϕ0(x) = f(x) (see [1, 2]). In this case, β = 1.0415 . . ., η = 0.0207 . . .
and δ0 = QLβη = 0.0008 . . . < 1

2 , so that the conditions of Theorem 2 are
satisfied. Thus, we can then apply the Newton method from ϕ0(x) = f(x) to

approximate a solution ϕ̃(x) of the integral equation (6.1).

Table 1. Error bounds from Example 1 and using the Newton method.

n ∥ϕ∗(x)− ϕn(x)∥

0 0.005
1 6.4893 . . .× 10−7

2 9.5419 . . .× 10−10

To obtain an approximation of the solution ϕ∗, we consider, for example, the
stop criterion ∥ϕ∗(x)−ϕn(x)∥ ≤ 10−15 for the Newton sequence. In Table 1, we
show the errors obtained ∥ϕ∗(x)−ϕn(x)∥, where ϕn(x) are the approximations
given by the Newton method.

Finally, if we use a k-step Newton’s method [8] with k > 1, instead of the
modified of Newton method (1-step Newton’s method), we can gain speed of
convergence reducing the operational cost of the Newton method.

Example 2. Consider the following nonlinear integral equation

ϕ(x) = f(x) +
1

70

∫ 1

0

(x+ 2) extϕ(t)2 dt, x ∈ [0, 1], (6.2)

with f(x) = 1
70

(
1 + (70− e2)ex

)
, such that ϕ∗(x) = ex is an exact solution.
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Observe that the kernel of the integral equation is K(x, t) = (x + 2) ext

is non-separable. Thus, we use the polynomial (2.1) to approximate it and
consider the integral equation

ϕ(x) =
1

70

(
1 + (70− e2)ex

)
+

1

70

∫ 1

0

pm(x, t)ϕ(t)2 dt, x ∈ [0, 1],

whose kernel is the polynomial pm, which is separable.
Observe that ϕ∗(x) can be located previously in a domainΩ, since it satisfies

∥ϕ∗(x)∥ − 1

70
∥1 + (70− e2)ex∥ − 1

70
max

0≤x,t≤1

{∣∣∣∣ ∫ 1

0

(x+ 2) extdt

∣∣∣∣}∥ϕ∗(t)∥2

≤ ∥ϕ∗(x)∥ − (2.4456 . . .)− 3

70
(e− 1)∥ϕ∗(t)∥2 ≤ 0,

which holds provided that ∥ϕ∗(x)∥ ≤ 3.1994 . . ., so that the domain Ω =
B(0, r∗), with r∗ = 3.1994 . . ., contains ϕ∗(x).

Table 2. Error bounds based on Chebyshev’s polynomial.

n ∥ϕ∗(x)− ϕn(x)∥

0 1.7182 . . .
1 8.0116 . . .× 10−2

2 2.6846 . . .× 10−4

3 4.1782 . . .× 10−9

Consider m = 5. The convergence of the Newton method is guaranteed
from Theorem 2 if the conditions of the theorem are satisfied. Note that L = 2
and Q = 0.1164 . . ., so that we have to choose a starting function ϕ0(x) such
that ∥H′(ϕ0)∥ ≤ 1

Q = 8.5838 . . . We choose ϕ0(x) = 1. Hence, β = 1.3037 . . .,

η = 0.1518 . . . and δ0 = QLβη = 0.0461 . . . < 1
2 , so that the hypotheses of

Theorem 2 holds. So, we can then apply the Newton method from ϕ0(x) = 1
to approximate a solution ϕ∗(x) of the integral equation (6.2). In Table 2, we
see the errors obtained ∥ϕ∗(x) − ϕn(x)∥, where ϕn(x) are the approximations
given by the Newton method.

Finally, we compare the results obtained with those obtained if the kernel
of the integral equation (6.2) is approximated by Taylor’s polynomial with
m + 1 = 6 terms, which are given in Table 3. From Tables 2 and 3, we
observe that both polynomials have a similar behavior, although Chebyshev’s
polynomial behaves a little better in this case.

Table 3. Error bounds based on Taylor’s polynomial.

n ∥ϕ∗(x)− ϕn(x)∥

0 1.7182 . . .
1 8.0153 . . .× 10−2

2 3.3040 . . .× 10−4

3 6.2072 . . .× 10−5
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7 Conclusions

The Newton method is the most used iterative method to solve a nonlinear
equation. The main problem of this method is the calculation of the inverse
involved in its algorithm, specially when we work in spaces of infinite dimen-
sion. Thus, if we want to solve an integral equation, we have to guarantee the
existence of the inverse at each step of the method, which is possible when the
kernel is sufficiently differentiable into any of the components by approximating
the kernel by a Taylor’s polynomial. If the kernel is not differentiable in any
of the components is studied in this work and we propose to approximate the
kernel of a Fredholm integral equation of the second kind by a Chebyshev in-
terpolation polynomial that lead to a separable kernel, so that we can explicitly
calculate the inverse that appears in each step of the Newton method and then
approximate a solution of the integral equation. Next, in future, we intend to
extend and adapt this idea to the study of Volterra’s integral equations.
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