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Abstract. This paper deals with the study of terminal value prob-

lem for the system of fractional differential equations with Caputo

derivative. Additional conditions are imposed on the solutions of

this problem in the form of a linear vector functional. Using the

theory of pseudo-inverse matrices, we obtain the necessary and suf-

ficient conditions for the solvability and the general form of the so-

lution of this boundary-value problem. In the one-dimensional case,

the obtained results are generalized to the case of a multi-point

boundary-value problem. The issue of obtaining similar results for

the terminal value problem for the system of fractional differential

equations with tempered and Ψ–tempered fractional derivatives of

Caputo type is considered.
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1 Introduction

The idea of fractional integro-differential calculus emerged almost at the same
time as of the theory of conventional integral and differential equations. How-
ever, its particularly rapid development began quite recently — in the second
half of the last century. This progress was driven not only by the emergence
and solution of new interesting questions of a theoretical nature, but also by an
increase in practical applications. There exist different definitions of fractional
derivatives, each used according to on the specific needs of a particular study.
For example, one of the types of fractional derivatives most often used to model
processes with memory [13, p. 87], [30, p. 90] is the Caputo derivative [9]. The
peculiarity of this derivative lies in the preservation of some properties of or-
dinary derivatives: the Caputo derivative of the constant function is zero and
the initial value problems depend on integer-order derivatives only.
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Therefore, as in the theory of ordinary differential equations (see [5,17]), the
most studied among different types of boundary-value problems for differen-
tial equations with the Caputo fractional derivative is the initial value problem
(see [13, 24, 30]). However, other problems, in which other conditions are im-
posed on the solutions of differential equations, are also of important theoretical
and practical significance. Such conditions include, for example, the constraints
imposed on the value of the sought solution not at the initial point a of the
studied interval [a, b] (the point of definition of the derivative), but at the end
point b of this interval — terminal value problem. Such boundary-value prob-
lems are used to describe, in particular, the behavior of models of viscoelastic
materials [3] and models of financial market dynamics [18]. Various aspects of
the theory of the terminal value problems have been considered by numerous re-
searchers, in particular, [1,4,10,12,13,14,15,16,20,21,22,23,34,35,37,38,39,40].

In this paper, we investigate the terminal value problem for the system
of differential equations with the Caputo fractional derivative, the solutions
of which satisfy additional conditions having the form of a bounded linear
vector functional. In [8] the conditions for the solvability and the structure of
solutions to such a problem are established, when the condition on the value of
the solution at the end point of the interval on which this solution is sought is a
constituent part of the bounded linear vector functional. That is, formally, we
can apply the results obtained in [8] to the problem considered in this paper.
However, singling out the condition at the end point of the interval makes it
possible to use a different approach to its study, which has certain advantages.
The research approach applied in [8] is significantly based on the concept of the
fundamental matrix of a homogeneous system, the finding of which in the case
of variable coefficients is a non-trivial problem. An important property of the
approach considered in this paper is the reduction of the terminal value problem
for the system of differential equations with the Caputo fractional derivative to
an equivalent integral equation of the Fredholm type. This approach makes it
possible to avoid the use of the notion of the fundamental matrix and, based on
the results obtained in [6], to establish the necessary and sufficient conditions
for the solvability and the general form of the solution of the given problem.

In the space C[a, b], −∞ < a < b < +∞, we consider a linear terminal
value problem for the system of fractional differential equations

CDα
a+x(t) = A(t)x(t) + f(t), (1.1)

x(b) = x∗, (1.2)

whose solutions satisfy the conditions

lx(·) = q, (1.3)

where 0 < α < 1, CDα
a+ is the left Caputo fractional derivative of order α, A(t)

is a (n×n)-matrix and f(t) is a n-vector, whose components are real functions
continuous on [a, b], l = col

(
l1, l2, . . . , lp

)
: C[a, b] → Rp is bounded linear

vector functional, lν : C[a, b] → R, ν = 1, p, x∗ = col
(
x∗
1, x∗

2, . . . , x∗
p

)
∈

Rp, q = col
(
q1, q2, . . . , qp

)
∈ Rp. Here and further in this paper, the

symbol “col” is the notation of a column vector.
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Note that sometimes the problem (1.1)–(1.2) is written in a more general
form, replacing the condition (1.2) with the condition x(t∗) = x∗, t∗ ∈ (a, b]
and is called either the terminal value problem [23] or the intermediate value
problem [39]. Since, as a rule, a solution is sought on the interval [a, t∗],
that is, the condition is imposed on the unknown solution at the end point
of the interval of interest, then, without reducing generality, we can consider
t∗ = b [13, p. 108]. If you need to find a solution to the problem (1.1)–(1.2) on
some finite interval [a, b+ b∗], b∗ > 0, then its search takes place in two stages.
In the first stage, the solution to the problem (1.1)–(1.2) on the interval [a, b]
is sought. In the second stage, the value of the obtained solution is calculated
at the point a, i.e., x(a) = xa, and the solution on the interval [a, b + b∗] is
found by solving the problem (1.1)–(1.2) with the condition (1.2) replaced by
the initial condition x(a) = xa (see [16]).

2 Preliminaries

We introduce some definitions and preliminary facts of the fractional calculus
theory, which will be used in our study. For more details, we refer to the
books [13,24,30].

Definition 1. [13, p. 9] The function Γ : (0,∞) → R, defined by
Γ (x) =

∫∞
0

tx−1e−tdt, is called Euler’s Gamma function (or Euler’s integral of
the second kind).

Definition 2. [13, p. 67] Let α, β > 0. The function Eα,β defined by

Eα,β(z) =

∞∑
j=0

zj

Γ (jα+ β)

whenever the series converges is called the two-parameter Mittag–Leffler func-
tion with parameters α and β.

Definition 3. [13, p. 13], [24, p. 69], [30, p. 65] Let α ∈ R+. The operator
Iαa+x(t), defined on L1[a, b] by

Iαa+x(t) =
1

Γ (α)

∫ t

a

x(s)ds

(t− s)1−α

for a ≤ t ≤ b, is called the left Riemann–Liouville fractional integral operator
of order α.

By ACm[a, b] we denote the set of functions with an absolutely continuous
(m− 1)st derivative.

Definition 4. [13, p. 27], [24, p. 70], [30, p. 68] Let Im−α
a+ x(t) ∈ ACm[a, b],

m = [α] + 1, t > a. The left Riemann–Liouville fractional derivative Dα
a+x(t)

of order α ∈ R+ is defined by

Dα
a+x(t) =

(
d

dt

)m

Im−α
a+ x(t) =

1

Γ (m− α)

(
d

dt

)m ∫ t

a

x(s)ds

(t− s)1−m+α
.
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By Tm−1[x; a] we denote the Taylor polynomial of degree m−1 for the function
x, centered at a.

Definition 5. [13, p. 50], [33, 36] Let α ≥ 0, Im−α
a+ x(t) ∈ ACm[a, b] and

Tm−1[x; a] exists, where m = [α] + 1. The left Caputo fractional derivative
CDα

a+x(t) of order α ∈ R+ is defined by

CDα
a+x(t) = Dα

a+[x− Tm−1[x; a]]. (2.1)

Lemma 1. [13, p. 108], [14, 39] Let 0 < α < 1, vector function f(t,x) :
[a, b]×Y → Rn, Y ⊂ Rn is continuous with respect to t on [a, b]. The terminal
value problem

CDα
a+x(t) = f(t,x(t)), x(b) = x∗

is equivalent to a system of weakly singular integral equations

x(t) = x∗ +
1

Γ (α)

∫ b

a

G(t, s)f(s,x(s))ds,

where

G(t, s) =

{
−(b− s)α−1, s > t,
(t− s)α−1 − (b− s)α−1, s ≤ t.

(2.2)

Lemma 2. [13, p. 128] Let 0 < α < 1, hi ∈ R, i = 1, 3, h1 + h2 ̸= 0, the
function f(t, x) : [a, b] × R → R is continuous with respect to t on [a, b]. The
function x ∈ C[a, b] is a solution of a two-point boundary-value problem

CDα
a+x(t) = f(t, x(t)), h1x(a) + h2x(b) = h3

if and only if it is a solution of an integral equation

x(t) =
h3

h1 + h2
+

1

Γ (α)

∫ b

a

G(t, s)f(s, x(s))ds,

where

G(t, s) =

{
− h2

h1+h2
(b− s)α−1, s > t,

(t− s)α−1 − h2

h1+h2
(b− s)α−1, s ≤ t.

Remark 1. For absolutely continuous functions with an integrable derivative,
the Definition 5 coincides with the usual definition of the Caputo derivative

CDα
a+x(t) =

1

Γ (1− α)

∫ t

a

x′(s)ds

(t− s)α
. (2.3)

The disadvantage of this definition of CDα
a+x(t) is that the equivalence between

a Caputo fractional derivative equation and an integral equation is only valid
for the definition CDα

a+x(t) because of the fact that Iαa+x(t) does not map all
of C[a, b] into AC[a, b] [10, 33,36].
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3 Criterion of solvability of the terminal value problem
with additional restrictions

We will establish the necessary and sufficient conditions for the solvability
and give an algorithm for building a family of solutions to the problem under
study. To do this, we will show that the boundary-value problem (1.1)–(1.3)
is equivalent to a boundary-value problem for a system of Fredholm integral
equations of the second kind, and we will use the approach presented in the
paper [25] to study it.

By Lemma 1, the terminal value problem (1.1)–(1.2) is equivalent to a
system of linear weakly singular equations

x(t) = x∗ +
1

Γ (α)

∫ b

a

G(t, s)(A(s)x(s) + f(s))ds, (3.1)

where the kernel of G(t, s) has the form (2.2). We rewrite the system (3.1) in
the form as follows:

x(t) = g(t) +

∫ b

a

K(t, s)x(s)ds, (3.2)

where

g(t) = x∗ +
1

Γ (α)

∫ b

a

G(t, s)f(s)ds, K(t, s) =
1

Γ (α)
G(t, s)A(s). (3.3)

Therefore, we can shift our focus the study of the boundary-value prob-
lem (1.1)–(1.3) to the study of the boundary-value problem for the system of
weakly singular equations (3.2), (1.3). Using the approach described in the
works [6,7], we will reduce it to an equivalent problem for a system of integral
equations with a square summable kernel Km(t, s), m ∈ N, which is determined
using the recurrence relations

Km+1(t, s) =

∫ b

a

K(t, ξ)Km(ξ, s)dξ, K1(t, s) = K(t, s).

Indeed, multiplying both sides of the Equation (3.2) by K(t, s) from the
left and integrating the left and right sides of the equality obtained as a result
over the interval [a, t], we get∫ b

a

K(t, s)x(s)ds =

∫ b

a

K(t, s)g(s)ds+

∫ b

a

K2(t, s)x(s)ds.

Continuing this process, we obtain∫ b

a

Km−1(t, s)x(s)ds =

∫ b

a

Km−1(t, s)g(s)ds+

∫ b

a

Km(t, s)x(s)ds.
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Adding all the equations obtained as a result to the Equation (3.2), we find
that x(t) is a solution of the system

x(t) = gm(t) +

∫ b

a

Km(t, s)x(s)ds, (3.4)

gm(t) = g(t) +

m−1∑
l=1

∫ b

a

Kl(t, s)g(s)ds.

The iterated kernelsKm(t, s) have the same structure as the weakly singular
kernel K(t, s) (3.3), but the number 1− α is replaced by the number 1−mα,
which is negative for sufficiently large m. Therefore, (see [28, p. 61]), for all m
by which the condition

m > 1/(2α), (3.5)

is satisfied, the kernels Km(t, s) are square summable.
Therefore, according to condition (3.5), after finitely many steps, we arrive

at the system (3.4) with square summable kernel Km(t, s). Generally speak-
ing, the systems (3.2) and (3.4) are not equivalent. However, it is possible to
choose a number m in such a way that condition (3.5) is satisfied, making the
systems (3.2) and (3.4) equivalent (see [28, p. 63]). In the future, we assume
that the number m is chosen in this way. Thus, we pass from the investigation
of the boundary-value problem for the system of integral equation with un-
bounded kernel (3.2), (1.3) to the investigation of the boundary-value problem
for the system of Fredholm integral equation (3.4), (1.3).

In [25], the criterion of solvability of the boundary-value problem (3.4), (1.3)
for the case of a single equation (n = 1) was established. Using the approach
described in [25], we present a similar result for a system of equations (n > 1).
By considering the problem (3.4), (1.3) in the Hilbert space L2[a, b], we will
reduce it to an operator equation in the space ℓ2. Let {φi(t)}∞i=1 be a complete
orthonormal system of functions in L2[a, b]. We introduce a n-vectors xi, gi,
i = 1,∞

xi =

∫ b

a

x(t)φi(t)dt, gi =

∫ b

a

gm(t)φi(t)dt

and a (n× n)-matrices Aij , i, j = 1,∞,

Aij =

∫ b

a

∫ b

a

Km(t, s)φi(t)φj(s)dsdt.

The problem (3.4), (1.3) can be rewritten in the form of a countable system of
linear algebraic equations, which is equivalent to an operator equation in the
space ℓ2:

Uz =

[
Λ
W

]
z =

[
g
q

]
= h. (3.6)

Here, vectors z, g and block matrices Λ, W have the form:

z = col
(
x1, x2, . . . , xi, . . .

)
, g = col

(
g1, g2, . . . , gi, . . .

)
,
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https://doi.org/10.3846/mma.2025.20814


126 O. Boichuk and V. Feruk

Λ =



Λ11 Λ12 . . . Λ1i . . .
Λ21 Λ22 . . . Λ2i . . .
...

...
. . .

...
...

Λi1 Λi2 . . . Λii . . .
...

... . . .
...

. . .


, Λij =

{
In −Aij , i = j,
−Aij , i ̸= j,

W = lΦ(·), Φ(t) =
(
φ1(t), φ2(t), . . . , φi(t), . . .

)
,

where, In is the identity matrix of dimensions n. The operator Λ : ℓ2 → ℓ2
appearing on the left-hand side of the operator equation (3.6) has the form
Λ = I − A, where I : ℓ2 → ℓ2 is the identity operator and A : ℓ2 → ℓ2 is a
compact operator. Thus, Λ : ℓ2 → ℓ2 is a Fredholm operator of index zero
(dimkerΛ = dimkerΛ∗ < ∞) and U : ℓ2 → ℓ2 ×Rp is a Fredholm operator of
nonzero index (dimkerU < ∞, dimkerU∗ < ∞).

Thus, the following theorem is true for Equation (3.6) (see [5]):

Theorem 1. The homogeneous equation (3.6) (h = 0) possesses a d2-parameter
family of solutions z ∈ ℓ2

z = PΛr
PQd2

cd2
∀cd2

∈ Rd2 , d2 = r − rank Q.

The inhomogeneous equation (3.6) is solvable if and only if the following
r + d1 linearly independent conditions are satisfied:

PΛ∗
r
g = 0, PQ∗

d1
(q −WΛ+g) = 0, d1 = p− rank Q (3.7)

and the equation possesses a d2-parameter family of solutions z ∈ ℓ2 of the
form

z = PΛrPQd2
cd2 +PΛrQ

+(q −WΛ+g) +Λ+g, ∀cd2 ∈ Rd2 . (3.8)

Here, Q = WPΛr
is a block (p × r)-matrix, PΛr

(PΛ∗
r
) is a matrix formed

by a complete system of r linearly independent columns (rows) of the matrix
projectorPΛ (PΛ∗), wherePΛ (PΛ∗) is the projector onto the kernel (cokernel)
of the matrix Λ, and PQd2

(PQ∗
d1
) is a matrix formed by a complete system of

d2 (d1) linearly independent columns (rows) of the matrix projector PQ (PQ∗),
where PQ (PQ∗) is the projector onto the kernel (cokernel) of the matrix Q
and Λ+ (Q+) is the pseudoinverse Moore–Penrose matrix for the matrix Λ
(Q).

If the conditions (3.7) are satisfied, then, according to the Riesz–Fischer the-
orem, one can find an element x ∈ L2[a, b] such that the quantities xi, i = 1,∞,
determined from Equation (3.6) are the Fourier coefficients of this element.
Thus, the following representation is true:

x(t) =

∞∑
i=1

xiφi(t) = Φ(t)z. (3.9)

The element x(t) given by relations (3.9) is the desired solution of the boundary-
value problem (3.4), (1.3), and therefore of the original problem (1.1)–(1.3).

According to [5], the following result is true:
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Theorem 2. The homogeneous boundary-value problem (1.1)–(1.3) (f(t) =
0, q = 0) possesses a solution x ∈ C[a, b]

x(t) = Φ(t)PΛrPQd2
cd2 ∀cd2 ∈ Rd2 .

The inhomogeneous boundary-value problem (1.1)–(1.3) is solvable if and only
if the following r+ d1 linearly independent conditions (3.7) are satisfied and it
possesses a d2-parameter family of solutions x ∈ C[a, b] (3.9), where the vector
z has the form (3.8).

Remark 2. In the scalar case (n = 1), the terminal value problem (1.1)–(1.2)
possesses a unique solution [12,16]. Therefore, the boundary-value problem (1.1)–
(1.3) is overdetermined and can have no more than one solution.

Example 1. We illustrate the theoretical results presented above by analyzing
a terminal value problem for a system of two fractional differential equations

CD
1/2
0+ x(t) = Ax(t) + f(t), t ∈ [0, 1], (3.10)

x(1) = x∗ (3.11)

with additional restriction
x(0) = q, (3.12)

where

x(t) =

(
x1(t)
x2(t)

)
, A =

(
0 1
1 0

)
,

f(t) =
1√
π

(
6
√
t− 6

√
πt+ 4

√
π

12
√
t− 3

√
πt+ 2

√
π

)
, x∗ =

(
1
2

)
, q = −

(
2
4

)
.

By Lemma 1, the terminal value problem (3.10)–(3.11) is equivalent to a system
of Fredholm integral equations of the second kind

x(t) = g(t) +

∫ 1

0

K(t, s)x(s)ds, (3.13)

where

g(t) =
1√
π

(
3
√
πt− 8t

√
t+ 8

√
t− 2

√
π

6
√
πt− 4t

√
t+ 4

√
t− 4

√
π

)
,

K(t, s) =
1√
π

(
0 1
1 0

){
−(1− s)−1/2, s > t,
(t− s)−1/2 − (1− s)−1/2, s ≤ t.

(3.14)

We have α = 1/2 and all iterated kernels starting from K2(t, s) are square
summable and we can pass from the a system of integral equations (3.13) with
unbounded kernel (3.14) to the equivalent (the number 1 is not an eigenvalue
of the operator K (see [28, p. 63])) a system of integral equations with square
summable kernel K2(t, s)

x(t) = g2(t) +

∫ 1

0

K2(t, s)x(s)ds, (3.15)
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where

g2(t) = −1

2

(
3t2 − 10t+ 5
6t2 − 20t+ 10

)
,

K2(t, s) =
1

π

(
1 0
0 1

) 2
(
1−

√
t
)
(1− s)−1/2 − π, s > t,

2
(
1−

√
t
)
(1− s)−1/2, s ≤ t.

Equation (3.15) can be reduced to a system of linear algebraic equations.
We introduce the functions φi(t) =

√
2i− 1Pi−1(t), where Pi(t) are the Leg-

endre polynomials. The system {φi(t)}∞i=1 is a complete orthonormal system
of functions in L2[0, 1]. Equation (3.15) is an equation with degenerate kernel
and a polynomial right-hand side and its solution is a polynomial of degree at
most 2. This means that, in the construction of the operator equation (3.6),
we can restrict ourselves to the functions {φi(t)}3i=1

φ1(t) = 1, φ2(t) =
√
3 (2t− 1) , φ3(t) =

√
5
(
6t2 − 6t+ 1

)
. (3.16)

By using the functions (3.16), we can reduce the Equation (3.15) to the
operator equation (3.6) in the form:[

Λ
W

]
z =

[
g
q

]
,

where the vectors z, g and block matrices Λ, W have the form:

Λ =
1

3150π

 525(9π − 8)I2 −175
√
3(8− 3π)I2 −840

√
5I2

105
√
3(16− 5π)I2 210(8 + 15π)I2 21

√
15(16 + 5π)I2

−240
√
5I2 −5

√
15(16 + 21π)I2 30(105π − 8)I2

 ,

W =
(
I2 −

√
3I2

√
5I2

)
, z = col

(
x1 x2 x3

)
, xi =

∫ 1

0

x(t)φi(t)dt,

g =
1

60
col

(
−30

(
1
2

)
35
√
3

(
1
2

)
−3

√
5

(
1
2

))
.

In this case, the block matrices Λ+, PΛ, PΛ∗ , Q+, PQ and PQ∗ have the form

Λ+ = Λ−1 =
1

20265π − 13792

×

 2(6405π + 3296)I2 −20
√
3(105π − 316)I2 14

√
5(15π + 248)I2

20
√
3(105π − 352)I2 60(315π − 304)I2 −14

√
15(45π + 64)I2

14
√
5(15π + 32)I2 30

√
15(21π − 8)I2 70(285π − 184)I2

 ,

PΛ = PΛ∗ = Ô3, Q =
(
O2 O2 O2

)
, Q+ = col

(
O2 O2 O2

)
,

PQ = Î3, PQ∗ = I2,

where Ô3 is the zero block matrix of dimension 3, Î3 is identity block matrix
of dimensions 3, I2 is the identity matrix of dimension 2 and O2 is the zero



Terminal value problem with additional restrictions 129

matrix of dimension 2. Hence, the solvability conditions (3.7) are satisfied and,
by Theorem 2, the boundary-value problem (3.10)–(3.12) possesses a unique
solution x(t) of the form

x(t) = Φ(t)Λ−1g

=
(
− 1 · 1

2
+
√
3 (2t− 1)

√
3

2
+
√
5
(
6t2 − 6t+ 1

)
· 0
)(1

2

)
=

(
3t− 2
6t− 4

)
.

Note that boundary-value problem (3.10)–(3.12) may not have a solution if
condition (3.12) is replaced by another condition. In particular, if the following
additional restriction ∫ 1

0

x(t)dt =

(
2
1

)
(3.17)

is imposed on the solution of the terminal value problem (3.10)–(3.11), then it
has no solution. Indeed, in this case, the matrix W and the vector q have the
form

W =
(
I2 O2 O2

)
, q =

(
2
1

)
and the solvability conditions (3.7) are not satisfied and, therefore, the boundary-
value problem (3.10), (3.11), (3.17) is unsolvable.

Example 2. In the work [12], the authors showed that in the general case (n ≥
2), unlike the scalar case (n = 1), the terminal value problem (1.1)–(1.2) can
have a family of solutions. The imposition of additional restrictions (1.3) on
the solutions of the problem (1.1)–(1.2) allows us to single out among them
those with more specific properties. We consider a terminal value problem for
the system of two fractional differential equations [12]

CD
1/2
0+ x(t) = Ax(t), t ∈ [0, b], (3.18)

x(b) = 0, (3.19)

where

x(t) =

(
x1(t)
x2(t)

)
, A =

(
cosφ sinφ
− sinφ cosφ

)
and the finite positive number b and the angle φ are such that

E1/2(z
∗) = E1/2,1(z

∗) = 0, z∗ = λ
√
b ∈ C,

φ := arg(z∗) ∈ (−π, π], λ := cosφ+ i sinφ.

We will impose an additional restriction on the solutions of the terminal value
problem (3.18)–(3.19)

x1(0) = 2, (3.20)

that is, in our case,

lx(·) =
(
1 0
0 0

)
x(0), q =

(
2
0

)
.
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By Lemma 1, the terminal value problem (3.18)–(3.19) is equivalent to a system
of Fredholm integral equations of the second kind

x(t) =

∫ b

0

K(t, s)x(s)ds, (3.21)

where

K(t, s) =
1√
π

(
cosφ sinφ
− sinφ cosφ

){
−(b− s)−1/2, s > t,
(t− s)−1/2 − (b− s)−1/2, s ≤ t.

(3.22)

We have, as in example 1, α = 1/2 and all iterated kernels starting from
K2(t, s) are square summable and we can pass from the a system of integral
equations (3.21) with unbounded kernel K(t, s) (3.22) to a system of integral
equations with square summable kernel K2(t, s)

x(t) =

∫ b

0

K2(t, s)x(s)ds, (3.23)

where

K2(t, s) =
1

π

(
cos 2φ sin 2φ
− sin 2φ cos 2φ

) 2
(√

b−
√
t
)
(b− s)−1/2 − π, s > t,

2
(√

b−
√
t
)
(b− s)−1/2, s ≤ t.

It is known [5], that if the system of linearly independent vectors of the
kernel of the Fredholm integral operator is known, then this system can be
used instead of system {φi(t)}ri=1 to construct the general solution system of
equation (3.23). The system (3.18), and hence system of equation (3.23), has
two linearly independent solutions of the form [12]

φ1(t) =
1

β

(
u(t)
v(t)

)
, φ2(t) =

1

β

(
−v(t)
u(t)

)
, β2 =

∫ b

0

(
u2(t) + v2(t)

)
dt, (3.24)

where u, v : R+ → R are given by

u(t) = E1/2

(
λ
√
t
)
+ E1/2

(
λ̄
√
t
)
, v(t) = i

(
E1/2

(
λ
√
t
)
− E1/2

(
λ̄
√
t
))

.

By using the vectors (3.24), we get

xi =

∫ b

0

φT
i (t)x(t)dt, Aij =

∫ b

0

∫ b

0

φT
i (t)K2(t, s)φj(s)dsdt, i, j = 1, 2

and the vectors z, g and matrices Λ, W, in the Equation (3.6), have the form:

z =

(
x1

x2

)
, g =

(
0
0

)
, Λ = O2, W =

2

β

(
1 0
0 0

)
.

Therefore, r = 2 and the matrices Λ+, PΛ2
, PΛ∗

2
, Q have the form

Λ+ = O2, PΛ2
= PΛ∗

2
= I2, Q = W.
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Since p = 1, rankQ = 1, d1 = d2 = 1, then the matrices Q+, PQ1
and PQ∗

1

have the form

Q+ =
β

2

(
1 0
0 0

)
, PQ1

=

(
0
1

)
, PQ∗

1
=
(
0 1

)
.

Hence, the solvability conditions (3.7) are satisfied and, by Theorem 1, the
vector z has the form

z =

(
1 0
0 1

)(
0
1

)
c+

β

2

(
1 0
0 1

)(
1 0
0 0

)(
2
0

)
=

(
β
c

)
,

and, by Theorem 2, the boundary-value problem (3.18)–(3.20) possesses a
1−parameter family of solutions x(t) of the form

x(t) =
1

β

(
u(t)
v(t)

)
β +

1

β

(
−v(t)
u(t)

)
c =

(
u(t)− ĉv(t)
v(t) + ĉu(t)

)
, ĉ =

c

β
.

Example 3. In this example, we consider a two-point boundary-value problem
for a scalar equation and illustrate the application of Lemma 2. Such a problem,
like the terminal value problem, is well-posed, and imposing an additional
restriction on its solutions turns it into an overdetermined problem. We will
investigate the solvability of a two-point boundary-value problem for a scalar
fractional differential equation

CD
1/2
0+ x(t) = −x(t) + 3

√
πt+ 6

√
t− 2

√
π, t ∈ [0, 1], (3.25)

x(0) + x(1) = −
√
π (3.26)

with additional restriction ∫ 1

0

x(t)dt = −
√
π

2
. (3.27)

By Lemma 2, the problem (3.25)–(3.26) is equivalent to a Fredholm integral
equation of the second kind

x(t) = 4t
√
t+3

√
πt− 4

√
t− 2

√
π− 1√

π

∫ t

0

x(s)ds√
t− s

+
1

2
√
π

∫ 1

0

x(s)ds√
1− s

. (3.28)

We have, as in the previous examples, α = 1/2 and we can pass from
the investigation of the integral equation (3.28) to the investigation of the
equivalent the integral equation with square summable kernel K2(t, s)

x(t) = g2(t) +

∫ 1

0

K2(t, s)x(s)ds, (3.29)

where

g2(t) = −
√
π

4

(
6t2 − 20t+ 9

)
,

K2(t, s) =
1

2π


(
1− 2

√
t
)
(1− s)−1/2 − π, s > t,

π +
(
1− 2

√
t
)
(1− s)−1/2, s ≤ t.
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As in Example 1, by using the functions (3.16), we can reduce the equa-
tion (3.29) to the operator equation (3.6) in the form:

Uz =

[
Λ
W

]
z =

[
g
q

]
= h,

where

Λ =
1

3150π

 1050(3π + 1) 175
√
3(3π + 2) 210

√
5

105
√
3(8− 5π) 210(15π + 4) 21

√
15(5π + 8)

−120
√
5 −5

√
15(21π + 8) 30(105π − 4)

 ,

W =
(
1 0 0

)
, z = col

(
x1 x2 x3

)
, xi =

∫ 1

0

x(t)φi(t)dt,

g =

√
π

60
col
(
−15 35

√
3 −3

√
5
)
, q = −

√
π

2
.

In this case, the matrices Λ+, PΛ, P
∗
Λ, Q

+, PQ and PQ∗ have the form

Λ+ = Λ−1 =
1

6(548 + 1155π)

×

 6405π + 1648 −10
√
3(105π + 73) 7

√
5(15π − 26)

10
√
3(105π − 176) 60(105π + 31) −14

√
15(15π + 34)

7
√
5(15π + 16) 10

√
15(21π + 11) 35(195π + 94)

 ,

PΛ = PΛ∗ = O3, Q =
(
0 0 0

)
, Q+ = col

(
0 0 0

)
,

PQ = I3, PQ∗ = 1,

where O3 is the zero matrix of dimension 3 and I3 is identity matrix of dimen-
sions 3. Hence, the solvability conditions (3.7) are satisfied and, by Theorem 2,
the boundary-value problem (3.25)–(3.27) possesses a unique solution x(t) of
the form

x(t) = Φ(t)Λ−1g =

√
π

12
(−1+ 3(2t− 1) · 1+

√
5(6t2 − 6t+1) · 0) =

√
π(3t− 2).

4 Multi-point boundary-value problem

The approach described in this paper to study the problem (1.1)–(1.3), in the
case of a single equation (n = 1), can also be applied to the study of a multi-
point boundary-value problem for a linear equation (1.1). The argumentation
for this approach is based on the following statement, which is analogous to
Lemmas 1 and 2:

Lemma 3. Let 0 < α < 1, a = t1 < t2 < · · · < tk−1 < tk = b, hi ∈ R,

i = 1, k + 1, βk =
k∑

i=1

hi ̸= 0, the function f(t, x) : [a, b]×R → R is continuous
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with respect to t on [a, b]. The function x ∈ C[a, b] is a solution of a multi-point
boundary-value problem

CDα
a+x(t) = f(t, x(t)), (4.1)

k∑
i=1

hix(ti) = hk+1 (4.2)

if and only if it is a solution of a integral equation

x(t) =
hk+1

βk
+

1

Γ (α)

∫ t

a

f(s, x(s))ds

(t− s)1−α
− 1

βkΓ (α)

k∑
i=2

hi

∫ ti

a

f(s, x(s))ds

(ti − s)1−α

=
hk+1

βk
+

1

Γ (α)

∫ b

a

G(t, s)f(s, x(s))ds,

(4.3)

where

G(t, s) =


−

k∑
j=i

hj

βk
(tj − s)α−1, ti ≥ s > t ≥ ti−1,

(t− s)α−1 −
k∑

j=i

hj

βk
(tj − s)α−1, ti−1 ≤ s ≤ t ≤ ti.

(4.4)

The problem (4.1)–(4.2), as special cases, includes the initial problem at
hi = 0, i = 2, k, the terminal value problem at hi = 0, i = 1, k − 1, and
two-point problem at k = 2 (see [13, p. 128]).

Proof. In order to prove the validity of Lemma 3, it is enough to repeat the
proof of Lemma 2 given in [13, p. 128]. Indeed, having determined the value
of x(ti) from the Equation (4.3), i = 1, k

x(ti) =
hk+1

βk
+

1

Γ (α)

∫ b

a

G(ti, s)f(s, x(s))ds

=
hk+1

βk
+

1

Γ (α)

∫ ti

a

f(s, x(s))ds

(ti − s)1−α
− 1

βkΓ (α)

k∑
j=2

hj

∫ tj

a

f(s, x(s))ds

(tj − s)1−α
,

and substituting them into the condition (4.2), we make sure that it is satisfied.
Moreover, an application of the differential operator CDα

a+ to both sides of (4.3)
yields Equation (4.1). Therefore, x(t) solves the boundary-value problem (4.1)–
(4.2) if it solves the integral equation (4.3).

On the contrary, if the function x(t) is a solution of the differential equa-
tion (4.1), then it, according to Lemma 2 (h1 = 1, h2 = 0, h3 = xa), also
satisfies the equation

x(t) = xa +
1

Γ (α)

∫ t

a

f(s, x(s))ds

(t− s)1−α
(4.5)

with some (presently unknown) quantity xa. Taken at t = ti, i = 2, k, we get:

x(ti) = xa +
1

Γ (α)

∫ ti

a

f(s, x(s))ds

(ti − s)1−α
.
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Substituting the value of x(ti) into the condition (4.2), we have

βkxa +
1

Γ (α)

k∑
i=2

hi

∫ ti

a

f(s, x(s))ds

(ti − s)1−α
= hk+1. (4.6)

Solving (4.5) for xa and inserting the found result into (4.6), we obtain the
equality

βk

(
x(t)− 1

Γ (α)

∫ t

a

f(s, x(s))ds

(t− s)1−α

)
+

1

Γ (α)

k∑
i=1

hi

∫ ti

a

f(s, x(s))ds

(ti − s)1−α
= hk+1,

which is equivalent to the Equation (4.3). Therefore, the function x(t) is a
solution of the integral equation (4.3), if it is a solution of the boundary-value
problem (4.1)–(4.2). ⊓⊔

Recall that Lemma 3, like Lemmas 1 and 2, will be valid only for the
definition of the Caputo fractional derivative (2.1), which will coincide with
the usual definition of the Caputo derivative (2.3) on the space of absolutely
continuous functions.

In the space C[a, b], −∞ < a < b < +∞, we consider a multi-point
boundary-value problem for the linear fractional differential equation

CDα
a+x(t) = A(t)x(t) + f(t),

k∑
i=1

hix(ti) = hk+1, (4.7)

that is, a special case of the problem (4.1)–(4.2), the solutions of which are
subject to additional constraints (1.3). By Lemma 3, the problem (4.7) is
equivalent to a weakly singular integral equation similar to the Equation (3.2),
that is, the equation

x(t) = g(t) +

∫ b

a

K(t, s)x(s)ds, (4.8)

where

g(t) =
hk+1

βk
+

1

Γ (α)

∫ b

a

G(t, s)f(s)ds, K(t, s) =
1

Γ (α)
G(t, s)A(s),

and the function G(t, s) has the form (4.4).

Hence, we show that the study of the multi-point boundary-value prob-
lem (4.7), (1.3) is reduced to the study of the boundary-value problem for the
weakly singular integral equation (4.8), (1.3). For the boundary-value prob-
lem (4.7), (1.3) the criterion of solvability similar to the Theorem 2 is true. To
make sure of this, it is enough to repeat the calculations performed in the case
of the terminal value problem, setting n = 1 and taking into account the new
form of function g(t) and the kernel K(t, s).
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5 Terminal value problem for the system of differential
equations with the tempered and Ψ -tempered fractional
derivatives of Caputo type

The method of researching the boundary-value problem (1.1)–(1.3) presented in
this paper can be applied, with minor changes, also for researching the problem
of finding the conditions for the solvability and constructing a solution to the
terminal value problem for the system of fractional differential equations with
tempered Caputo derivative. The tempered derivative, which was first defined
in the article [31], is widely used for describes the transition between normal
and anomalous diffusions (or the anomalous diffusion in finite time or bounded
physical space), as well as in poroelasticity, finance, ground water hydrology,
geophysical flows (see works [26,31] and the literature cited in them).

We will give the definition of tempered Caputo derivative. To do this, we
first introduce the definitions of tempered Riemann-Liouville fractional integral
and tempered Riemann-Liouville fractional derivative. The properties of these
concepts can be found in more detail, for example, in works [19,26,27].

Definition 6. [19,27] Suppose that real function x(t) is piecewise continuous,
integrable on (a, b), α > 0, λ ≥ 0. The tempered Riemann–Liouville fractional
integral of order α is defined to be

Iα,λa+ x(t) = e−λtIαa+

(
eλtx(t)

)
=

1

Γ (α)

∫ t

a

e−λ(t−s)x(s)ds

(t− s)1−α
.

Definition 7. [19, 27] For x ∈ C[a, b], 0 < α < 1, λ ≥ 0 the tempered
Riemann–Liouville fractional derivative of order α is defined to be

Dα,λ
a+ x(t) =

(
d

dt
+ λ

)
I1−α,λ
a+ x(t)

= e−λtDα
a+

(
eλtx(t)

)
=

1

Γ (1− α)

d

dt

∫ t

a

e−λ(t−s)x(s)ds

(t− s)α
.

Definition 8. [26] For x ∈ AC[a, b], 0 < α < 1, λ ≥ 0 the tempered Caputo
fractional derivative of order α is defined to be

CDα,λ
a+ x(t) = e−λtCDα

a+

(
eλtx(t)

)
= Dα,λ

a+ (x(t)− x(a)) = Dα,λ
a+ x(t)− e−λ(t−a)(t− a)−α

Γ (1− α)
x(a).

Note that if λ = 0 then the Caputo tempered fractional derivative reduces to
the Caputo fractional derivative CDα,0

a+x(t) = CDα
a+x(t), and therefore, Caputo

derivatives can be regarded as a particular case of Caputo tempered derivatives.
In the space C[a, b], we consider a terminal value problems for the system

of fractional differential equations with tempered Caputo derivative of order
0 < α < 1

CDα,λ
a+ x(t) = A(t)x(t) + f(t), eλbx(b) = x∗, (5.1)
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whose solutions satisfy the conditions

l
(
eλ·x(·)

)
= q, (5.2)

and the assumptions on the coefficients of problem (5.1)–(5.2) are the same as

for problem (1.1)–(1.3). Since CDα,λ
a+ x(t) = e−λtCDα,0

a+

(
eλtx(t)

)
and for any

function x ∈ C[a, b] will also be satisfied eλ·x(·) ∈ C[a, b], then we can apply
to the study of problem (5.1)–(5.2) the same methodology as when studying
problem (1.1)–(1.3). To substantiate this approach, we note that, using the
results of works [26, 29], it is possible to show that the function g(t) and the
kernel K(t, s) in the system of weakly singular integral equations (3.2), in this
case, will have the form

g(t) = e−λ(t−a)x∗ +
1

Γ (α)

∫ b

a

G(t, s)eλsf(s)ds,

K(t, s) =
1

Γ (α)
G(t, s)A(s)eλs, (5.3)

G(t, s) =

{
−(b− s)α−1e−λb, s > t,
(t− s)α−1e−λt − (b− s)α−1e−λb, s ≤ t.

According to our assumptions, the kernel K(t, s) (5.3), like the kernel
K(t, s) (3.3), is also a weakly singular kernel. Therefore, after conducting simi-
lar considerations, we will obtain a criterion of solvability of the the boundary-
value problem (5.1)–(5.2), similar to Theorem 2, which is obviously a more
general result.

We also note that the results obtained above can be generalized to the case
of the terminal value problem for the system of fractional differential equa-
tions with tempered Ψ–Caputo derivative (with some restrictions on the func-
tion Ψ(t)). The tempered Ψ–Caputo derivative was first introduced in the
paper [27]. It is a generalization of the tempered Caputo derivative (Ψ(t) = t)
and covers the well-known fractional derivatives for λ = 0, like the Caputo–
Hadamard fractional derivative (Ψ(t) = ln t), the Caputo–Erdélyi–Kober frac-
tional derivative (Ψ(t) = tσ). As in the case of the tempered Caputo deriva-
tive, we first introduce the definitions of tempered Ψ–fractional integral and
tempered Ψ–Riemann–Liouville fractional derivative and then we will give the
definition tempered Ψ–Caputo derivative (see [11,27,32]).

Definition 9. [11, 27, 32] Let α > 0, λ ≥ 0, the real function x ∈ C[a, b] and
Ψ ∈ C1[a, b] is an increasing differentiable function such that Ψ ′(t) ̸= 0 for all
t ∈ [a, b]. Then, the tempered Ψ–fractional integral of order α is defined by

Iα,λ,Ψa+ x(t) = e−λΨ(t)Iα,Ψa+

(
eλΨ(t)x(t)

)
=

1

Γ (α)

∫ t

a

Ψ ′(s)
[
Ψ(t)− Ψ(s)

]α−1
e−λ[Ψ(t)−Ψ(s)]x(s)ds,
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where Iα,Ψa+ x(t) is the Ψ–Riemann–Liouville fractional integral of order α, which
has the form (see [2, 27])

Iα,Ψa+ x(t) =
1

Γ (α)

∫ t

a

Ψ ′(s)
[
Ψ(t)− Ψ(s)

]α−1
x(s)ds.

Definition 10. [11, 27, 32] Let the assumptions of the Definition 9 be satis-
fied and let 0 < α < 1. Then the tempered Ψ–Riemann–Liouville fractional
derivative of order α is defined to be

Dα,λ,Ψ
a+ x(t) =

(
d

dt
+ λ

)
I1−α,λ,Ψ
a x(t) = e−λΨ(t)Dα,Ψ

a+

(
eλΨ(t)x(t)

)
=

e−λΨ(t)

Γ (1− α)

(
1

Ψ ′(t)

d

dt

)∫ t

a

Ψ ′(s)
[
Ψ(t)− Ψ(s)

]−α
eλΨ(s)x(s)ds,

where Dα,Ψ
a+ x(t) is the Ψ–Riemann–Liouville fractional derivative of x(t) of order

0 < α < 1, which has the form (see [2, 27])

Dα,Ψ
a+ x(t) =

(
1

Ψ ′(t)

d

dt

)
I1−α,Ψ
a+ x(t)

=
1

Γ (1− α)

(
1

Ψ ′(t)

d

dt

)∫ t

a

Ψ ′(s)
[
Ψ(t)− Ψ(s)

]−α
x(s)ds.

Definition 11. [11, 27, 32] Let the assumptions of the Definition 10 be satis-
fied. Then the tempered Ψ–Caputo fractional derivative of x(t) of order α is
defined to be

CDα,λ,Ψ
a+ x(t) = e−λΨ(t)CDα,Ψ

a+

(
eλΨ(t)x(t)

)
= Dα,λ,Ψ

a+ (x(t)− x(a))

= Dα,λ,Ψ
a+ x(t)− e−λ(Ψ(t)−Ψ(a))(Ψ(t)− Ψ(a))−α

Γ (1− α)
x(a).

The Ψ–Caputo fractional derivative of x(t) of order α, introduced in the pa-
per [2], is defined by the rule

CDα,Ψ
a+ x(t) = Dα,Ψ

a+ (x(t)− x(a)) = Dα,Ψ
a+ x(t)− (Ψ(t)− Ψ(a))−α

Γ (1− α)
x(a).

In this case, eλΨ(·)x(·) ∈ C[a, b] because it is a composition of two continuous
functions. Considering also that

CDα,λ,Ψ
a+ x(t) = e−λΨ(t)CDα,Ψ

a+

(
eλΨ(t)x(t)

)
,

we can apply the technique, described in this article, to study a terminal value
problems for the system of fractional differential equations with tempered Ψ–
Caputo derivative of order 0 < α < 1 in the space C[a, b]

CDα,λ,Ψ
a+ x(t) = A(t)x(t) + f(t), eλΨ(b)x(b) = x∗, (5.4)
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whose solutions satisfy the conditions

l
(
eλΨ(·)x(·)

)
= q (5.5)

with the same assumptions on the coefficients as before. Similarly, as in
work [27], it is possible to show that the function g(t) and the kernel K(t, s)
in the system of integral equations (3.2), in this case, will have the form

g(t) = e−λ(Ψ(t)−Ψ(a))x∗ +
1

Γ (α)

∫ b

a

G(t, s)Ψ ′(s)eλΨ(s)f(s)ds,

K(t, s) =
1

Γ (α)
G(t, s)Ψ ′(s)A(s)eλΨ(s), (5.6)

G(t, s) =

{
−(Ψ(b)− Ψ(s))α−1e−λΨ(b), s > t,
(Ψ(t)− Ψ(s))α−1e−λΨ(t) − (Ψ(b)− Ψ(s))α−1e−λΨ(b), s ≤ t.

In order for us to be able to apply to the study of problems (5.4)–(5.5)
the same approach as for problems (1.1)–(1.3), it is necessary for the function
Ψ(t) to be such that some iterated kernel Km(t, s) of the kernel K(t, s) (5.6)
was square summable. So, for example, it will be when Ψ(t) = t (the case
of tempered Caputo derivative), as well as when Ψ(t) is a linear function. If
this condition is satisfied, after conducting similar considerations as in the
previous cases, we will obtain the criterion of solvability of the boundary-value
problem (5.4)–(5.5), which generalizes the corresponding results for the cases
of the Caputo derivative and the Caputo tempered derivative.

6 Conclusions

We have investigated the terminal value problem for the system of differential
equations with the Caputo fractional derivative of order α (0 < α < 1) in
the space C[a, b]. Additional conditions are imposed on the solutions of this
problem in the form of the bounded linear vector functional. The problem under
consideration has been reduced to an equivalent Fredholm problem for a system
of integral equations with square summable kernels. Necessary and sufficient
conditions for solvability have been established and the general form of the
solution of the given problem has been found. The one-dimensional case was
considered and similar results were obtained for the multi-point boundary-value
problem for the differential equation with the Caputo fractional derivative, the
solutions of which are subject to additional conditions. For the terminal value
problem for the system of fractional differential equations with tempered and
Ψ–tempered fractional derivatives of Caputo type, the generalization of the
results, obtained in this paper, has been considered.

In the future, the terminal value problem for a multi-term fractional dif-
ferential equation with additional conditions will be investigated. We want to
consider the cases when such a problem is equivalent to the problem studied in
this paper and establish a criterion for its solvability.
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