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Abstract. We consider the non-stationary flow of a micropolar fluid in a thin chan-
nel with an impervious wall and an elastic stiff wall, motivated by applications to
blood flows through arteries. We assume that the elastic wall is composed of several
layers with different elastic characteristics and that the domains occupied by the two
media are infinite in one direction and the problem is periodic in the same direc-
tion. We provide a complete variational analysis of the two dimensional interaction
between the micropolar fluid and the stratified elastic layer. For a suitable data reg-
ularity, we prove the existence, the uniqueness and the regularity of the solution to
the variational problem associated to the physical system. Increasing the data regu-
larity, we prove that the fluid pressure is unique, we obtain additional regularity for
all the unknown functions and we show that the solution to the variational problem
is solution for the physical system, as well.
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1 Introduction

The interaction between a fluid and an elastic structure (FSI) is a widely
spread phenomenon in real life. Due to this practical interest and to the dif-
ficulty of the mathematical model as well, FSI problems have been studied
in many recent articles. A survey on mathematical modeling, analysis and
simulation techniques for FSI problems is given in [23] and we may highlight
different results related to FSI problems with the following selection of the lat-
est works: [5, 16, 21, 26, 27]. An example of FSI problem is represented by a
viscous flow in a thin elastic tube structure. It is motivated by applications in
biology (blood circulation in a network of vessels) as well as in the engineer-
ing of industrial installations such as pipelines. Mostly the fluid rheology is
Newtonian, described by the Navier-Stokes or Stokes system. However, sev-
eral fluids exhibit a non-Newtonian behavior. In particular, the modeling of
the motion of colloids needs to take into consideration the rotation of small
particles. In hemodynamics the red blood cells, platelets and other (smaller)
cells flow in plasma and in order to take into account the rotations of these
cells one may use the micropolar fluid model. It was introduced firstly in [2,15]
and then studied extensively by mathematicians (see [19] and the bibliography
therein, [9, 10, 11, 12, 13, 17, 18, 25, 29, 30]). In the case of thin structures the
asymptotic analysis of micropolar flows was performed for various geometries
and various boundary conditions in: [3, 4, 6, 7, 8, 14,22]. The importance of the
micropolar fluids from the physical viewpoint generated also numerous articles
presenting applications of the micropolar fluid model in biomedicine and blood
flow modeling: see e.g., [1, 31].

Periodic flows have many applications in fluid mechanics. This model is
used, e.g., to study the behaviour of fluids in pipes and channels or to describe
the blood flows through arteries.

In the present article we consider the periodic flow of a micropolar fluid in an
infinite thin channel with an impervious wall and an elastic stiff wall in the con-
text of FSI problems for thin structures. For the Newtonian rheology (without
micro-rotations) this topic was studied in [21]. To our knowledge, the present
work is the first article on the micropolar flow in a thin channel with elastic
stiff wall. The nondimensionalization and various scalings of the Newtonian
fluid-structure interaction model are discussed in [20]. The model considered
in the present paper solves a more challenging problem, taking into considera-
tion the non-Newtonian rheology of the blood corresponding to micro-rotations
of the blood cells in the plasma, which introduces an additional unknown and
coupling in the description of the problem. From the mathematical point of
view, we have to overcome new difficulties generated by the additional coupling
velocity-microrotation.

In our study the elastic wall is composed of several layers with different
elastic characteristics. As an example from the real life of such a material
we mention the vessels walls. The walls of both arteries and veins have the
same three distinct elastic layers: the outer layer of the wall, composed of
collagen fibers and elastic tissue, the middle layer made up of smooth muscle
cells, elastic tissue and collagen fibres and the inner layer mainly made up of
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endothelial cells (see e.g., [32]). This last layer sometimes contains one-way
valves, especially in the veins of the arms and legs.

The purpose of the present article is to provide a complete variational anal-
ysis of the two dimensional interaction between a micropolar fluid and a strat-
ified elastic layer when the domains occupied by the two media are infinite in
one direction and the problem is periodic in the same direction. The problem
depends on a small parameter, ε, defined as the ratio between the thickness
of the elastic structure and that of the fluid layer. This small parameter will
play an important role in a forthcoming article, dealing with the asymptotic
analysis of the physical problem described above.

The outline of this article is as follows: in Section 2 we present the geom-
etry of the problem, the characteristics of the two media and the assumptions
of our study. Then we give the non stationary, coupled system that describes
the interaction between the micropolar fluid and the stratified elastic struc-
ture. This system contains linear equations for the micropolar fluid and for the
elastic medium, junction conditions between the elastic layers and between the
fluid and the elastic structure, as well, periodicity, boundary and initial con-
ditions. The unknowns of the physical system are: the fluid velocity (vε), the
microrotation (ωε), the fluid pressure (pε) and the displacement of the elastic
structure (uε). In addition to the hypothesis of periodicity of the motion, we
also suppose that the deformation of the elastic structure is small, assumption
that allows us to write the fluid equations and conditions on the undeformed
fluid domain. Section 3 deals with the variational analysis of the problem.
For a suitable data regularity, we prove the existence, the uniqueness and the
regularity of the solution to the variational problem associated to the physical
system and we define the weak solution of the problem, that involves the un-
knowns: uε, vε and ωε. In the last part of this section we introduce the fourth
unknown, the micropolar fluid pressure, and we establish some properties of
this function. In Section 4, we increase the data regularity in such a way that
we succeed in proving that the fluid pressure is unique, as the other three un-
knowns, in obtaining additional regularity for the unknowns and in showing
that the solution to the variational problem is solution for the physical system,
as well.

2 Description of the physical problem

Consider an infinite layer Lε = {(x1, x2)/x1 ∈ R, x2 ∈ (−1, ε)} divided into two
parts: L− = {(x1, x2)/x1 ∈ R, x2 ∈ (−1, 0)} representing the layer occupied
by a micropolar fluid and L+

ε = {(x1, x2)/x1 ∈ R, x2 ∈ (0, ε)} representing an
elastic layer. The boundaries associated with this geometry are denoted by:{

F− = {(x1,−1)/x1 ∈ R}, F+
ε = {(x1, ε)/x1 ∈ R},

F 0 = {(x1, 0)/x1 ∈ R},

with F− an impervious boundary, F+
ε an elastic boundary and F 0 the interface

between the micropolar fluid and the elastic layer. We suppose that the solid
structure is composed by p elastic layers each of them being characterized by
constant density and matrix-valued elasticity coefficients. The constant values
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of these physical characteristics, denoted ρ+,s and As
ij , respectively, s = 1, ..., p,

are different from one layer to another, generating jumps on each boundary that
separates the elastic layers. So, the elastic medium is described by a piecewise
constant density, denoted ρ+, and by piecewise constant elasticity coefficients,
denoted Aij , with the properties:

(∃) ρ+min, ρ
+
maxindependent of ε, 0<ρ

+
min≤ρ

+(x2/ε)≤ρ+max (∀)x2∈ [0, ε] (2.1)

and

Aij = (aklij )1≤k,l≤2 =
(
aklij

(x2
ε

))
1≤k,l≤2

, i, j ∈ {1, 2},

aklij =
E

2(1 + ν)

(
2ν

1− 2ν
δikδjl + δijδkl + δilδjk

)
,

(∃)κ > 0 independent of ε s.t.

2∑
i,j,k,l=1

aklij

(x2
ε

)
ηljη

k
i ≥ κ

2∑
j,l=1

(ηlj)
2,

(∀)x2 ∈ [0, ε], (∀) η = (ηlj)1≤j,l≤2, η
l
j = ηjl ,

(2.2)

with E = E
(
x2

ε

)
the Young’s modulus and ν = ν

(
x2

ε

)
the Poisson’s ratio.

Denote in what follows ξ2 = x2/ε.

We give below a more precise description of the elastic medium. We suppose
that there exist ζ1, ζ2, ..., ζp with 0 < ζ1 < ... < ζp−1 < ζp = 1 such that
ρ+ (ξ2) = ρ+,s, Aij (ξ2) = As

ij in L+,s
ε (∀) s ∈ {1, ..., p} with ρ+,s positive

constants and As
ij matrices with constant elements and

L+,s
ε = {(x1, x2)/x1 ∈ R, ζs−1ε < x2 < ζsε}, s ∈ {1, ..., p}

representing the elastic layers. By convention, ζ0 = 0.

The interface between two consecutive elastic layers, L+,s
ε and L+,s+1

ε , s ∈
{1, ..., p− 1} is defined by F+,s

ε = {(x1, ζsε)/x1 ∈ R}.

Remark 1. All the characteristics of the elastic medium, namely ρ+, E, ν, de-
pend on ε, but for the sake of notational simplicity, we omit it.

The characteristics of the micropolar fluid, are several positive constants inde-
pendent of ε: ρ− its density, χ, µ viscosity coefficients, j, γ constants related to
the microrotation. The nonstationary interaction between the micropolar fluid
and the elastic layer in a given time interval (0, T ) is described by the following
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coupled system

ρ+,s ∂
2uε

∂t2
− cε

2∑
i,j=1

∂

∂xi

(
As

ij

∂uε

∂xj

)
= hε in L+,s

ε × (0, T ), s∈{1, ..., p},
ρ−

∂vε

∂t
− 2(µ+χ)div (D(vε)) +∇pε − χcurlωε= f

div vε = 0

j
∂ωε

∂t
− γ∆ωε + 2χωε − χcurl vε = g

in L−×(0, T ),

2∑
j=1

Ap
2j

∂uε

∂xj
= 0 on F+

ε × (0, T ),
[uε]s = 0,
2∑

j=1

As
2j

∂uε

∂xj
=

2∑
j=1

As+1
2j

∂uε

∂xj

on F+,s
ε × (0, T ), s ∈ {1, ..., p− 1},

vε = 0, ωε = 0 on F− × (0, T ),
vε =

∂uε

∂t
ωε = 0

−pεe2 + 2(µ+ χ)D(vε)e2 = cε

2∑
j=1

A1
2j

∂uε

∂xj

on F 0 × (0, T ),

ρ+,s ∂2uε

∂t2 − cε

2∑
i,j=1

∂

∂xi

(
As

ij

∂uε

∂xj

)
= hε in L+,s

ε × (0, T ), s ∈ {1, ..., p},

(2.3)
where [uε]s represents the jump of the function uε on F+,s

ε × (0, T ), s ∈
{1, ..., p − 1} and cε is a positive constant depending on ε that expresses the
dependence of the elasticity coefficients on the small parameter ε. Since the
elasticity coefficients are great, in general cε is a negative power of ε. More
precisely, in a forthcoming article dealing with the asymptotic analysis of the
considered problem we take cε = ε−3. In addition to the characteristics of the
two media, the other data of the problem are the forces hε, f , and g. The un-
knowns of problem (2.3) are: the displacement of the elastic medium, uε and
the velocity, the microrotation, the pressure of the fluid, vε, ωε, pε, respectively.
We denoted in the previous system

D(v) =
1

2
(∇v + (∇v)T ), curlω =

∂ω

∂x2
e1 −

∂ω

∂x1
e2, curlv =

∂v2
∂x1

− ∂v1
∂x2

,

with e1, e2 the coordinate axes vectors.

Remark 2. Relations (2.3)6,7 represent the continuity of the displacement and
of the normal stresses, respectively, at the interface between two consecutive
elastic layers. In the case when the characteristics of the elastic medium are
continuous, i.e. it has only one layer, these conditions disappear.

Remark 3. The coupling conditions between the two media, (2.3)9,11, represent
the continuity of velocities and of normal stresses on the interface. In a more

Math. Model. Anal., 29(4):641–668, 2024.



646 G. Panasenko, L. Paoli and R. Stavre

accurate micropolar fluid-elastic structure interaction description, the junction
conditions should be imposed on the deformed interface, e.g., vε(x+uε(x), t) =
∂uε

∂t (x, t), instead of (2.3)9, since for the fluid we use the Eulerian description,
while for the structure, the Lagrangeian one. However, when the deformation
of the elastic structure is small, that represents an assumption of our model,
the equations for the two media can be written with a good approximation
in the initial corresponding domains and the junction conditions on the fixed
interface separating these domains (see e.g., [23]).

Condition (2.3)12 is related to another assumption of our approach, that
the interaction problem is 1−periodic with respect to x1 variable. This means
that both the data and the unknown functions are 1−periodic in x1.

For any a ∈ R we may define as periodicity domains
D−

a = (a, a+ 1)× (−1, 0), D+
a,ε = (a, a+ 1)× (0, ε),

D+,s
a,ε = (a, a+ 1)× (ζs−1ε, ζsε), s ∈ {1, ..., p},

Da,ε = (a, a+ 1)× (−1, ε)
(2.4)

and as periodicity boundaries
Γ−
a = (a, a+ 1)× {−1}, Γ+

a,ε = (a, a+ 1)× {ε},
Γ+,s
a,ε = (a, a+ 1)× {ζsε}, s ∈ {1, ..., p− 1},
Γ 0
a = (a, a+ 1)× {0}.

(2.5)

3 Variational analysis of the problem

This section is devoted to the analysis of the weak formulation for (2.3). In the
first part we present the functional framework of this analysis. For a suitable
data regularity, we prove the existence, the uniqueness and the regularity of
the solution to the variational problem associated with the physical system
(2.3). For obtaining and studing this variational problem it is more convenient
to reduce first the number of unknown functions. To this aim, we replace
two unknowns of the problem, namely the velocity of the fluid, vε, and the
displacement of the elastic layer, uε, with one function, wε: L̄ε × [0, T ] 7→ R2,
defined as follows:

wε(x, t) =

{
vε(x, t) if (x, t) ∈ L̄− × [0, T ],
∂uε

∂t
(x, t) if (x, t) ∈ L̄+

ε × [0, T ].

Coupling condition (2.3)9 ensures that the function wε is well defined on F 0.

3.1 Data regularity and functional spaces

In order to perform the variational analysis of the previous problem we present
the regularity of the data and the functional spaces corresponding to the un-
known functions.

As we previously said, we consider that the density and the elastic coeffi-
cients characterizing the elastic medium, ρ+, ν and E are piecewise-constant
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functions of ξ2. It is possible to extend our results for the case when these
functions are piecewise-smooth in ξ2.

For fixing the ideas, we will work with the periodicity domains D−
0 =:

D−, D+
0,ε =: D+

ε , D
+,s
0,ε =: D+,s

ε , D0,ε =: Dε and the periodicity boundaries

Γ−
0 =: Γ−, Γ+

0,ε =: Γ+
ε , Γ

+,s
0,ε =: Γ+,s

ε , Γ 0
0 =: Γ 0.

For the given forces we begin with the minimum regularity necessary for
establishing our first results, which is:

hε∈H1(0,T ;(L2
#(D

+
ε ))

2), f ∈H1(0,T ;(L2
#(D

−))2), g∈H1(0,T ;L2
#(D

−)). (3.1)

Introduce next the following functional spaces:



Wε =
{
φ ∈ (H1

#(Dε))
2
/
divφ = 0 in D−,φ = 0 on Γ−

}
,

W− =
{
φ ∈ (H1

#(D
−))2

/
divφ = 0 in D−,φ = 0 on Γ−

}
,

V =
{
z ∈ H1

#(D
−)

/
z = 0 on Γ− ∪ Γ 0

}
,

HWε
=

{
w ∈ L2(0, T ;Wε)

/∂w
∂t

∈ L2(0, T ; (L2
#(Dε))

2)

}
,

HW− =

{
w ∈ L2(0, T ;W−)

/∂w
∂t

∈ L2(0, T ; (L2
#(D

−))2)

}
,

HV =

{
ω ∈ L2(0, T ;V )

/∂ω
∂t

∈ L2(0, T ;L2
#(D

−))

}
.

Taking into account the properties of the unknowns uε,vε, ωε and the defini-
tion of wε, we notice that the spaces Wε, HWε correspond to the unknown wε,
the spacesW−, HW− correspond to the unknown vε and the spaces V, HV cor-
respond to the unknown ωε. The additional regularity in time for the unknown
functions, included in the definition of the spaces HWε

, HV , is a consequence
of the regularity of the data with respect to the same variable, given by (3.1).

Remark 4. Here and below the symbol # appearing as index of a space Hs,
with s ∈ N∗ means that this space represents the closure of C∞-space of func-
tions 1−periodic in x1 with respect to the norm of the corresponding space.
L2
#(D

−) = {q : L− 7→ R/q ∈ L2(D−), q(x1 + k, x2) = q(x1, x2) a.e. for

(x1, x2) ∈ D−, (∀) k ∈ Z} and a similar definition holds also for the other
periodicity domains.

Any function F , belonging to a space Hs
#, s ∈ N∗, can be extended from

its periodicity domain, for example Dε, to the corresponding infinite layer, Lε,
by putting F (x1 + k, x2) = F (x1, x2) a.e. for (x1, x2) ∈ Dε, (∀) k ∈ Z and the
extension will receive the same notation as the corresponding function.

Math. Model. Anal., 29(4):641–668, 2024.
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3.2 Existence, uniqueness and regularity of the weak solution

The unknowns vε,uε being replaced with ”the global” unknown wε, we are
leaded to the study of the following variational problem

Find (wε, ωε) ∈ HWε ×HV such that∫
Dε

ρ±
∂wε

∂t
(t) ·φ+ cε

2∑
i,j=1

∫
D+

ε

Aij
∂

∂xj

(∫ t

0

wε(s) ds

)
· ∂φ
∂xi

+2(µ+ χ)

∫
D−
D(wε(t)) : D(φ)− χ

∫
D−
curlωε(t) ·φ+ j

∫
D−

∂ωε

∂t
(t)z

+γ

∫
D−

∇ωε(t) · ∇z + 2χ

∫
D−

ωε(t) z − χ

∫
D−

z curlwε(t)

=

∫
Dε

fε(t) ·φ+

∫
D−

g(t)z (∀) (φ, z) ∈Wε × V, in L2(0, T ),

wε(0) = 0 in (L2(Dε))
2,

ωε(0) = 0 in L2(D−),
(3.2)

where we denoted

ρ± = ρ+χ(D+
ε ) + ρ−χ(D−), fε = χ(D+

ε )hε + χ(D−) f ,

χ(S) representing the characteristic function of the set S. As in the case of the
elastic structure, ρ± depends on ε.

Since the test function φ is defined, as wε, on the whole domain Dε, the
functions that appear in the second and third terms of (3.2)2 represent the
restrictions of the corresponding functions to D+

ε and D−, respectively.

Remark 5. Due to the 1−periodicity in x1 of all functions, the results presented
below hold if we replace the particular domains D−, Dε, D

+
ε and their bound-

aries with the general ones given by (2.4), (2.5).

The first main result of this section is given by

Theorem 1. Let us assume that the data have the regularity (3.1). Then the
variational problem (3.2) has an unique solution (wε, ωε).

Proof. We begin by obtaining the existence result by means of the Galerkin’s
method. To this aim, consider {φn}n∈N∗ and {zm}m∈N∗ bases for the separable
spaces Wε and V , respectively and define the approximate functions

wn(x, t) =

n∑
k=1

ank (t)φk(x), (x, t) ∈ Dε × (0, T ),

ωm(x, t) =

m∑
i=1

bmi (t)zi(x), (x, t) ∈ D− × (0, T ),

(3.3)

with ank , b
m
i : [0, T ] → R. These coefficients will be determined by considering
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for (wn, ωm) a problem of the same type as (3.2), namely

∫
Dε

ρ±
∂wn

∂t
(t) ·φ+ cε

2∑
i,j=1

∫
D+

ε

Aij
∂

∂xj

(∫ t

0

wn(s) ds

)
· ∂φ
∂xi

+2(µ+χ)

∫
D−
D(wn(t)) : D(φ)− χ

∫
D−
curlωm(t) ·φ+ j

∫
D−

∂ωm

∂t
(t)z

+γ

∫
D−

∇ωm(t) · ∇z + 2χ

∫
D−

ωm(t) z − χ

∫
D−

z curlwn(t)

=

∫
Dε

fε(t) ·φ+

∫
D−

g(t)z (∀) (φ, z) ∈Wn × Vm, (∀) t ∈ [0, T ],

wn(0) = 0 in Wn, ωm(0) = 0 in Vm,

(3.4)

with Wn = span{φ1, ...,φn} and Vm = span{z1, ..., zm}.
Replacing in (3.4) the functionswn, ωm with their expressions given by (3.3)

and taking as test functions (φ1, 0), ..., (φn, 0); (0, z1), ..., (0, zm) we obtain a
linear system of n+m integro-differential equations for the unknown functions
ank , b

m
i , k = 1, ..., n, i = 1, ...,m. Denoting

cnl (t) =

∫ t

0

anl (s)ds, l = 1, ..., n

we transform the previous system into a linear system of 2n +m differential
equations of order 1. We obtain the existence and the uniqueness of the func-
tions ank , b

m
i , k = 1, ..., n, i = 1, ...,m as a consequence of the fact that the

matrix of the derivatives is non degenerate, which follows since {φk}k∈N∗ and
{zi}i∈N∗ are linear independent systems. In addition, due to the regularity
(3.1) of the data, we obtain ank , b

m
i ∈ H2(0, T ), (∀) k = 1, ..., n, i = 1, ...,m.

We obtain next the estimates that will allow us to pass to the limit in the
approximate problem. To this aim, we take as test function in (3.4)1 written
for a fixed value of t ∈ (0, T ) (φ, z) = (wn(t), ωm(t)) and we use the obvious
equality ∫

D−
curl ω ·w =

∫
D−

ω curl w (∀) w ∈Wε, (∀) ω ∈ V.

Using the classical Young’s inequality and integrating from 0 to θ, with θ ∈
(0, T ], we obtain∫
Dε

ρ±w
2
n(θ) + cε

2∑
i,j=1

∫
D+

ε

Aij
∂un(θ)

∂xj
· ∂un(θ)

∂xi
+ 4(µ+χ)

∫ θ

0

∫
D−
(D(wn(θ)))

2

+j

∫
D−
ω2
m(θ) + γ

∫ θ

0

∫
D−

(∇ωm)2 + 4χ

∫ θ

0

∫
D−
(ωm)2 ≤ 4χ2

γ

∫ θ

0

∫
D−

(wn)
2

+

∫ θ

0

∫
Dε

(wn)
2 +

∫ θ

0

∫
D−
(ωm)2 + ∥fε∥2L2(0,T ;(L2

#(Dε))2)
+ ∥g∥2L2(0,T ;L2

#(D−))

(∀)n,m ∈ N∗, (∀) θ ∈ [0, T ],

(3.5)

where

un(x, t) =

∫ t

0

wn(x, s)ds in D+
ε × (0, T ). (3.6)

Math. Model. Anal., 29(4):641–668, 2024.
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Using the properties (2.1) and (2.2) of the elastic layer characteristics and
applying Gronwall’s lemma we obtain from (3.5) a first set of estimates in the
form 

∥wn∥L∞(0,T ;(L2
#(Dε))2)

≤ CE(fε, g),

∥D(wn)∥L2(0,T ;(L2
#(D−))2×2) ≤ CE(fε, g),

∥E(un)∥L∞(0,T ;(L2
#(D+

ε ))2×2) ≤ Cc−1/2
ε E(fε, g),∥∥ωm

∥∥
L∞(0,T ;L2

#(D−))
≤ CE(fε, g),∥∥∇ωm

∥∥
L2(0,T ;(L2

#(D−))2)
≤ CE(fε, g),

(3.7)

with E representing the strain tensor, C a positive constant independent of
n,m, ε and E(fε, g) = ∥fε∥L2(0,T ;(L2

#(Dε))2) + ∥g∥L2(0,T ;L2
#(D−)).

Remark 6. Even if the function wn is defined on Dε × (0, T ), the previous
estimates give its H1−bounds in x only on D−. For obtaining H1−bounds
of wn on the whole Dε we need additional estimates that rely on the data
regularity (3.1).

For obtaining these additional estimates, we return to problem (3.4) and, us-
ing the data regularity (3.1), we derivate (3.4)1 with respect to t. Taking into
account the definition (3.3), derivating in t the left hand side of (3.4)1 means
to derivate the functions of t, ank , b

m
i , k = 1, ..., n, i = 1, ...,m, which is allowed,

due to their regularity. In this way we obtain a (3.4)-type problem, with every
function depending on t replaced with its time derivative, but with non homo-

geneous initial conditions for
∂wn

∂t
,
∂ωn

∂t
. Taking (φ, z) =

(
∂wn(t)

∂t
,
∂ωn(t)

∂t

)
as test function in

d

dt
(3.4) and integrating from 0 to θ, θ ∈ (0, T ] we obtain,

instead of (3.5):

∫
Dε

ρ±

(
∂wn(θ)

∂t

)2

+ cε

2∑
i,j=1

∫
D+

ε

Aij
∂wn(θ)

∂xj
· ∂wn(θ)

∂xi

+4(µ+ χ)

∫ θ

0

∫
D−

(
D

(
∂wn

∂t

))2

+ j

∫
D−

(
∂ωm(θ)

∂t

)2

+γ

∫ θ

0

∫
D−

(
∇
(
∂ωm

∂t

))2

+4χ

∫ θ

0

∫
D−

(
∂ωm

∂t

)2

≤
∫
Dε

ρ±

(
∂wn(0)

∂t

)2

+j

∫
D−

(
∂ωm(0)

∂t

)2

+
4χ2

γ

∫ θ

0

∫
D−

(
∂wn

∂t

)2

+

∫ θ

0

∫
Dε

(
∂wn

∂t

)2

+

∫ θ

0

∫
D−

(
∂ωm

∂t

)2

+

∥∥∥∥∂fε∂t
∥∥∥∥2
L2(0,T ;(L2

#(Dε))2)

+

∥∥∥∥∂g∂t
∥∥∥∥2
L2(0,T ;L2

#(D−))

(∀)n,m ∈ N∗, (∀) θ ∈ [0, T ].

(3.8)

For estimating the first two terms of the right hand side of (3.8) we make t = 0

in (3.4)1, we take as test function (φ, z) =

(
∂wn(0)

∂t
,
∂ωm(0)

∂t

)
and we use

(3.4)2,3; this yields:∥∥∥∥∂wn(0)

∂t

∥∥∥∥
(L2

#(Dε))2
+

∥∥∥∥∂ωm(0)

∂t

∥∥∥∥
L2

#(D−)

≤ CE1(fε, g),
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with E1(fε, g) = ∥fε∥H1(0,T ;(L2
#(Dε))2) + ∥g∥H1(0,T ;L2

#(D−)) and C a positive

constant independent of n,m, ε. So, we obtain the second set of estimates
presented below:

∥∥∥∥∂wn

∂t

∥∥∥∥
L∞(0,T ;(L2

#(Dε))2)

≤ C(fε, g),∥∥∥∥D(
∂wn

∂t

)∥∥∥∥
L2(0,T ;(L2

#(D−))2×2)

≤ C(fε, g),

∥E(wn)∥L∞(0,T ;(L2
#(D+

ε ))2×2) ≤ c−1/2
ε C(fε, g),∥∥∥∥∂ωm

∂t

∥∥∥∥
L∞(0,T ;L2

#(D−))

≤ C(fε, g),∥∥∥∥∇(
∂ωm

∂t

)∥∥∥∥
L2(0,T ;(L2

#(D−))2)

≤ C(fε, g),

(3.9)

where

C(fε, g) = C
(
∥fε∥H1(0,T ;(L2

#(Dε))2) + ∥g∥H1(0,T ;L2
#(D−))

)
,

with C independent of n,m and ε.
From (3.7)1,2, (3.9)1,2 and Korn’s inequality in the fluid domain we get

∥wn∥H1(0,T ;(H1
#(D−))2) ≤ C(fε, g). (3.10)

Using next (3.9)3 and applying Korn’s inequality in the elastic domain we
obtain the missing H1−regularity which finally gives

∥wn∥L∞(0,T ;(H1
#(Dε))2)

≤ C(fε, g). (3.11)

The estimates (3.7) and (3.9) provide us weakly convergent subsequences
with respect to the corresponding norms. For any bounded sequence {•n}n
or {•m}m appearing in (3.7) and (3.9) we will denote by {•nq}q or {•mp}p
its weakly convergent subsequence in the corresponding space. Consider τ ∈

L2(0, T ) an arbitrary function. Let us calculate

∫ T

0

(3.4)1 τdt, with (3.4)1 cor-

responding to the weakly convergent subsequences {•nq}q and {•mp}p and to
test functions (φ, z) ∈Wr × Vr, with r fixed:∫ T

0

τ

∫
Dε

ρ±
∂wnq

∂t
·φ+ cε

2∑
i,j=1

∫ T

0

τ

∫
D+

ε

Aij

∂unq

∂xj
· ∂φ
∂xi

+2(µ+ χ)

∫ T

0

τ

∫
D−

D(wnq
) : D(φ)− χ

∫ T

0

τ

∫
D−

curl ωmp
·φ

+j

∫ T

0

τ

∫
D−

∂ωmp

∂t
z + γ

∫ T

0

τ

∫
D−
∇ωmp

· ∇z + 2χ

∫ T

0

τ

∫
D−
ωmp

z

−χ
∫ T

0

τ

∫
D−

z curl wnq
=

∫ T

0

τ

∫
Dε

fε ·φ+

∫ T

0

τ

∫
D−

g z

(∀) (φ, z) ∈Wr × Vr, (∀) τ ∈ L2(0, T ).

(3.12)

Math. Model. Anal., 29(4):641–668, 2024.
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Remark 7. In the previous relation it was possible to take the test function in
Wr × Vr with r fixed since it is obvious that (φ, z) ∈ Wr × Vr yields (φ, z) ∈
Wk × Vl for any k, l ≥ r. In particular, as nq,mp → ∞ when q, p → ∞, it
follows that (∃) q0, p0 such that (φ, z) ∈Wnq × Vmp (∀) q ≥ q0, pq ≥ p0.

The estimates (3.7), (3.9) and (3.11) provide us all the weak convergences
necessary for passing to the limit in (3.12) with q, p → ∞, after discussing
the convergence of the second term of (3.12), more precisely the convergence of{∫ t

0
wnq (s)ds

}
q
={unq}q. Denote wε, uε, ωε the weak limits of {wnq}q, {unq}q,

ωmp
, respectively and define the space

H∞ =

{
w ∈ L∞(0, T ; (H1

#(Dε))
2)

/∂w
∂t

∈ L∞(0, T ; (L2
#(Dε))

2)

}
.

From (3.9)1 and (3.11) it follows that {wn}n ⊂ H∞ and

wnq ⇀ wε weakly star in H∞ as q → ∞. (3.13)

Using a result of [24] we obtain that the embedding H∞⊂C0([0, T ]; (L2
#(Dε))

2)
is compact. This property and the convergence (3.13) give (on a subsequence
of wnq

, that we denote in the same way, for simplicity)

wnq
→ wε strongly in C0([0, T ]; (L2

#(Dε))
2) when q → ∞ (3.14)

and so∫ t

0

wnq (s)ds→
∫ t

0

wε(s)ds strongly in C1([0, T ]; (L2
#(Dε))

2) as q → ∞. (3.15)

Combining (3.15), (3.6) and the weak convergenge in L2(0, T ; (H1
#(D

+
ε ))

2) of
{unq}q to uε we get

uε =

∫ t

0

wε(s)ds in L2(0, T ; (H1
#(D

+
ε ))

2) ∩ C1([0, T ]; (L2
#(D

+
ε ))

2).

Moreover, for q → ∞ we also have

∂unq

∂xj
⇀

∂

∂xj

(∫ t

0

wε(s)ds

)
weakly in L2(0, T ; (L2

#(D
+
ε ))

2), j = 1, 2.

We are now in a position to pass to the limit in (3.12) with q, p → ∞ and we
obtain∫ T

0

τ

∫
Dε

ρ±
∂wε

∂t
·φ+ cε

2∑
i,j=1

∫ T

0

τ

∫
D+

ε

Aij
∂

∂xj

(∫ t

0

wε(s)ds

)
· ∂φ
∂xi

+2(µ+ χ)

∫ T

0

τ

∫
D−

D(wε) : D(φ)− χ

∫ T

0

τ

∫
D−

curl ωε ·φ

+j

∫ T

0

τ

∫
D−

∂ωε

∂t
z + γ

∫ T

0

τ

∫
D−

∇ωε · ∇z + 2χ

∫ T

0

τ

∫
D−

ωε z

−χ
∫ T

0

τ

∫
D−

z curl wε =

∫ T

0

τ

∫
Dε

fε ·φ+

∫ T

0

τ

∫
D−

g z

(∀) (φ, z) ∈Wr × Vr, (∀) τ ∈ L2(0, T ).
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Taking into account that τ is an arbitrary function of L2(0, T ) and that⋃
r≥1(Wr × Vr) is dense in Wε × V , it follows that (wε, ωε) verifies (3.2)1,2. In

addition, all the estimates (3.7), (3.9), (3.10) and (3.11) hold for (wε, ωε).
For achieving the proof of the existence result it remains to show the initial

conditions (3.2)3,4. The initial condition (3.2)3 is obtained as a consequence
of (3.14) and wnq

(0) = 0 (∀)nq. The initial condition for the microrotation
follows in a similar way. Hence (wε, ωε) is solution for (3.2).

For obtaining the uniqueness result, consider (wi
ε, ω

i
ε), i = 1, 2 two solu-

tions of problem (3.2) and denote (wε, ωε) = (w1
ε , ω

1
ε)− (w2

ε , ω
2
ε). Subtracting

the relations (3.2)2 corresponding to the two solutions and taking in the re-
sulting equation as test function (φ, z) = (wε(t), ωε(t)), we obtain for (wε, ωε)
estimates of the same type as (3.7), but now with a right hand side equal to
zero. This leads to the desired uniqueness result and the previous convergences,
established before only on subsequences, hold now for the whole sequences. ⊓⊔

Remark 8. As an obvious consequence of (3.2)1 we have

wε ∈ C0([0, T ]; (L2
#(Dε))

2), ωε ∈ C0([0, T ];L2
#(D

−)).

Taking into account the definition of wε we have uε =

∫ t

0

wε(s)ds in L+
ε × (0, T ),

vε = wε in L− × (0, T ),
(3.16)

relation (3.16)1 corresponding to a homogeneous initial condition for the dis-
placement. The regularity with respect to the space and time variables of the
functions with physical meaning, the displacement of the elastic medium and
the fluid velocity, is an obvious consequence of (3.16) and of the regularity of
”the global” function wε previously established.

We end of this subsection with a definition that expresses the relation be-
tween the physical system and the variational problem presented before.

Definition 1. We say that (uε,vε, ωε) is a weak solution for the coupled sys-
tem (2.3) if (wε, ωε) is the unique solution to the variational problem (3.2) and
uε,vε are given by (3.16).

3.3 The micropolar fluid pressure

As we can see, the previous definition does not involve the fourth unknown of
the problem, namely the fluid pressure pε. In this subsection we introduce the
fluid pressure and we establish some properties for this unknown.

Lemma 1. Let (wε, ωε) be the unique solution to the variational problem (3.2).
Then there exists an unique function q0,ε ∈ L2(0, T ;L2(D−)) such that

ρ−
∂vε

∂t
− 2(µ+ χ)div (D(vε))− χcurlωε − f = −∇q0,ε

in L2(0, T ; (H−1(D−))2)
(3.17)
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and ∫
D−

q0,ε(t)dx = 0 a.e. in (0, T ). (3.18)

Proof. Define the space V = {ψ ∈ (C∞
0 (D−))2/div ψ = 0} and consider

ψ ∈ V. Every function φ = ψ in D−, extended by 0 in D+
ε and then extended

by periodicity to the whole layer Lε has the property that (φ, 0) is a test
function for (3.2)2, that gives:

ρ−
∫
D−

∂vε

∂t
(t) ·ψ + 2(µ+ χ)

∫
D−
D(vε(t)) : D(ψ)− χ

∫
D−
curlωε(t) ·ψ

=

∫
D−

f(t) ·ψ (∀)ψ ∈ V, a.e. in (0, T ).

De Rham’s theorem provides the existence of a distribution qε(t) such that we
have:

ρ−
∂vε

∂t
(t)− 2(µ+ χ)div (D(vε))(t)− χcurlωε(t)− f(t) = −∇qε(t)

in (H−1(D−))2, a.e. in (0, T ).
(3.19)

The space that appears in (3.19) is given by the regularity of the left hand side
of this equality, the term div(D(vε))(t) having the lowest regularity, namely
(H−1(D−))2. Hence ∇qε(t) ∈ (H−1(D−))2 a.e. in (0, T ) and, using e.g.,
Proposition 1.2., Chap. 1 of [28], we obtain qε(t) ∈ L2(D−) a.e. in (0, T ).
Notice that, if qε(t) verifies (3.19) then, for any function λ depending only on
t, qε(t) + λ(t) verifies (3.19). This means that there exists at least a function
q0,ε(t) ∈ L2(D−) with the property (3.18) that verifies the relation (3.19).

Suppose next that there exist two functions q10,ε and q20,ε with these prop-
erties. Since D− is a connected set, subtracting (3.19) corresponding to these
two functions we obtain

q10,ε − q20,ε = α(t) (3.20)

with α independent of x. The uniqueness of q0,ε(t) follows integrating (3.20)
on D− and using (3.18).

As a consequence of Proposition 1.2., Chap. 1 of [28] it follows that the
gradient operator is an isomorphism from L2(D−)/R into (H−1(D−))2 which
means that the mapping

ρ−
∂vε

∂t
(t)− 2(µ+ χ)div (D(vε))(t)− χcurlωε(t)− f(t) 7→ q0,ε(t)

is linear and continuous from (H−1(D−))2 into L2(D−)/R and, since

ρ−
∂vε

∂t
− 2(µ+ χ)div (D(vε))− χcurlωε − f ∈ L2(0, T ; (H−1(D−))2),

it follows that q0,ε ∈ L2(0, T ;L2(D−)). ⊓⊔

In what follows we extend the unique function q0,ε, defined on D−, to the
whole layer L−. We recall that all the other unknowns and given functions are
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defined on the infinite layers, according to Remark 4. To this aim, we take as
test function in (3.2)2 φ ∈ Wε, φ = 0 in R2\L− and, using the 1-periodicity
in x1 of all functions, we get a.e. in (0, T ), (∀)φ with the previous properties

ρ−
∫
D−

k

∂vε

∂t
(t) ·φ+ 2(µ+ χ)

∫
D−

k

D(vε(t)) : D(φ)− χ

∫
D−

k

curlωε(t) ·φ

=

∫
D−

k

f(t) ·φ,

where D−
k is defined by (2.4)1, k ∈ Z. Proceeding as before, we introduce the

unique function qk0,ε with the properties

ρ−
∂vε

∂t
− 2(µ+ χ)div (D(vε))− χcurlωε − f = −∇qk0,ε

in L2(0, T ; (H−1(D−
k ))

2),
(3.21)

qk0,ε ∈ L2(0, T ;L2(D−
k )), (3.22)∫

D−
k

qk0,ε(t)dx = 0 a.e. in (0, T ). (3.23)

Lemma 2. The function qk0,ε has the property

qk0,ε(x1, x2, t) = q0,ε(x1 − k, x2, t) a.e. for (x1, x2, t) ∈ D−
k × (0, T ).

Proof. From (3.17) we infer that:

ρ−
∫
D−

∂vε

∂t
(t)·φ+ 2(µ+ χ)

∫
D−
D(vε(t)) : D(φ)−

∫
D−
q0,ε(t) divφ

−χ
∫
D−
curlωε(t) ·φ =

∫
D−

f(t) ·φ (∀)φ∈(H1
0 (D

−))2, a.e. in (0, T ).
(3.24)

Let us suppose that the variable of integration in (3.24) is denoted by (y1, y2).
With the change of variable (y1, y2) = (x1 − k, x2) and using the periodicity in
x1 of the functions vε, ωε, f ,φ the previous relation becomes

ρ−
∫
D−

k

∂vε

∂t
(t) ·φ+ 2(µ+ χ)

∫
D−

k

D(vε(t)) :D(φ)−
∫
D−

k

q0,ε(x1 − k, x2, t) divφ

−χ
∫
D−

k

curlωε(t) ·φ =

∫
D−

k

f(t) ·φ (∀)φ ∈ (H1
0 (D

−
k ))

2, a.e. in (0, T ).

Denoting q0,ε,−k(x1, x2, t) = q0,ε(x1 − k, x2, t) a.e. for (x1, x2, t) ∈ D−
k × (0, T ),

the previous relation gives

ρ−
∂vε

∂t
− 2(µ+ χ)div (D(vε))− χcurlωε − f = −∇q0,ε,−k

in L2(0, T ; (H−1(D−
k ))

2).
(3.25)

Moreover
q0,ε,−k ∈ L2(0, T ;L2(D−

k )) (3.26)
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from the definition of this function and∫
D−

k

q0,ε,−k(t)dx =

∫
D−

q0,ε,(t)dx = 0. (3.27)

We notice that (3.25)–(3.27) represent (3.21)–(3.23) that gives, together with
the uniqueness of qk0,ε, q

k
0,ε = q0,ε,−k and the proof is completed. ⊓⊔

In this way we obtained an unique function q0,ε : L− × (0, T ) 7→ R with the
properties

ρ−
∂vε

∂t
− 2(µ+ χ)div (D(vε))− χcurlωε − f = −∇q0,ε

in L2(0, T ; (H−1(D−
k ))

2),

q0,ε ∈ L2(0, T ;L2
#(D

−)),

∫
D−

k

q0,ε(t)dx = 0 a.e. in (0, T )

for all k ∈ Z.

4 Improvement of the regularity with respect to the space
variable

In order to obtain more properties of the unknown functions and return from
the variational problem (3.2) to the physical coupled system (2.3), it is neces-
sary to increase the regularity of the data.

4.1 Regularity of microrotation, velocity, pressure

Remark 9. If the regularity of the data is given by (3.1), then the maximum
regularity for wε and qε in space is given by

wε ∈ HWε , q0,ε ∈ L2(0, T ;L2
#(D

−)). (4.1)

Unlike for the velocity and the pressure, the microrotation ωε is more regular
than ωε ∈ HV . Indeed, for φ = 0 in (3.2)2 the problem for ωε may be written
as:

−γ∆ωε = g − j
∂ωε

∂t
− 2χωε + χcurl vε in D− × (0, T ),

ωε = 0 on (Γ 0 ∪ Γ−)× (0, T ),
ωε 1− periodic in x1,

(4.2)

with the regularity of the right hand side of (4.2)1, L
2(0, T ;L2

#(D
−)), given by

Theorem 1.

Applying for (4.2) classical regularity results for Poisson’s equation with
periodicity conditions in x1 and homogeneous Dirichlet boundary conditions
on Γ 0 ∪ Γ− we get ωε ∈ L2(0, T ;H2

#(D
−)).
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For obtaining more regularity for wε and q0,ε it is necessary to consider
smoother data. In what follows we suppose that the data satisfy, in addition
to (3.1)

∂hε

∂x1
∈H1(0,T ;(L2

#(D
+
ε ))

2),
∂f

∂x1
∈H1(0,T ;(L2

#(D
−))2),

∂g

∂x1
∈H1(0,T ;L2

#(D
−)). (4.3)

The first result relying on this improvement of the data regularity is given by

Theorem 2. If the data have the regularity (3.1) and (4.3), (wε, ωε) is the
unique solution to (3.2) and q0,ε is the unique function introduced in Lemma 1,
then

∂wε

∂x1
∈ HWε ,

∂q0,ε
∂x1

∈ L2(0, T ;L2(D−)). (4.4)

Proof. Let h > 0 be a small parameter. Let us consider the domains D+
h,ε, D

−
h ,

Dh,ε given by (2.4), obtained from D+
ε , D

−, Dε, respectively, with a shift on
x1 axis. For any arbitrary element (φ, z) ∈Wε × V we use in what follows the
same notation for the functions extended by periodicity to the infinite layers
(see Remark 4). If we define ψ(x1, x2) = φ(x1 + h, x2) a.e. for (x1, x2) ∈ Lε,
ζ(x1, x2) = z(x1 + h, x2) a.e. for (x1, x2) ∈ L−, then (ψ, ζ) ∈ Wε × V . We
take in (3.2)2 as test function (ψ, ζ) and, denoting (x1, x2) = x, (x1+h, x2) =
x+h, (y1 − h, x2) = y−h, we obtain:

∫
Dε

ρ±
∂wε

∂t
(x, t)·φ(x+h) + cε

2∑
i,j=1

∫
D+

ε

Aij
∂

∂xj

(∫ t

0

wε(x,s) ds

)
· ∂φ
∂xi

(x+h)

+2(µ+ χ)

∫
D−
D(wε(x, t)) : D(φ(x+h))− χ

∫
D−
curlωε(x, t) ·φ(x+h)

+j

∫
D−

∂ωε

∂t
(x, t)z(x+h)+γ

∫
D−
∇ωε(x, t)·∇z(x+h)+2χ

∫
D−
ωε(x, t) z(x+h)

−χ
∫
D−

z(x+h) curlwε(x, t) =

∫
Dε

fε(x, t) ·φ(x+h)+

∫
D−
g(x, t)z(x+h).

(4.5)

We make the change of variable x1+h = y1 in (4.5), we denote f(y1, x2) = fy,x
for any function f and, taking into account that the densities and the matrix-
valued elasticity coefficients are independent of x1 it follows that:∫

Dh,ε

ρ±
∂wε

∂t
(y−h, t)·φy,x + cε

(∫
D+

h,ε

A11
∂

∂y1

(∫ t

0

wε(y−h, s) ds

)
·
∂φy,x

∂y1

+A12
∂

∂x2

(∫ t

0

wε(y−h, s) ds

)
·
∂φy,x

∂y1
+A21

∂

∂y1

(∫ t

0

wε(y−h, s) ds

)
·
∂φy,x

∂x2

+ A22
∂

∂x2

(∫ t

0

wε(y−h, s) ds

)
·
∂φy,x

∂x2

)
+2(µ+χ)

∫
D−

h

Dy1,x2wε(y−h,t) :Dy1,x2φy,x−χ
∫
D−

h

curly1,x2ωε(y−h,t)·φy,x
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+j

∫
D−

h

∂ωε

∂t
(y−h, t)zy,x + γ

∫
D−

h

∇y1,x2
ωε(y−h, t) · ∇y1,x2

zy,x

+2χ

∫
D−

h

ωε(y−h, t) zy,x − χ

∫
D−

h

zy,x curly1,x2wε(y−h, t)

=

∫
Dh,ε

fε(y−h, t) ·φy,x +

∫
D−

h

g(y−h, t)zy,x.

(4.6)

Using next the 1−periodicity in x1 we show that∫
⋄h

⋆ dy1dx2 =

∫
⋄
⋆ dx1dx2, (4.7)

where ⋄ is D+
ε , D

− or Dε and ⋆ is any integrand from (4.6). Let us show (4.7),
e.g., for∫

D−
h

Dy1,x2(wε(y−h, t)) : Dy1,x2(φ(y1, x2))dy1dx2

=

∫ 1

h

∫ 0

−1

Dy1,x2(wε(y−h, t)) : Dy1,x2(φ(y1, x2))dy1dx2

+

∫ 1+h

1

∫ 0

−1

Dy1,x2
(wε(y−h, t)) : Dy1,x2

(φ(y1, x2))dy1dx2

=

∫ 1

h

∫ 0

−1

Dx1,x2(wε(x1 − h, x2, t)) : Dx1,x2(φ(x1, x2))dx

+

∫ h

0

∫ 0

−1

Dx1,x2
(wε(x1 + 1− h, x2, t)) : Dx1,x2

(φ(x1 + 1, x2))dx

=

∫
D−
Dx1,x2

(wε(x1 − h, x2, t)) : Dx1,x2
(φ(x1, x2))dx1dx2,

due to the 1−periodicity in x1. With these calculations (4.6) becomes

∫
Dε

ρ±
∂wε

∂t
(x−h, t)·φ(x) + cε

2∑
i,j=1

∫
D+

ε

Aij
∂

∂xj

(∫ t

0

wε(x−h, s) ds

)
· ∂φ
∂xi

(x)

+2(µ+ χ)

∫
D−
D(wε(x−h, t)) :D(φ(x))− χ

∫
D−
curlωε(x−h, t) ·φ(x)

+j

∫
D−

∂ωε

∂t
(x−h, t)z(x) + γ

∫
D−
∇ωε(x−h, t) · ∇z(x) + 2χ

∫
D−
ωε(x−h, t) z(x)

−χ
∫
D−
z(x) curlwε(x−h, t) =

∫
Dε

fε(x−h, t) ·φ(x) +
∫
D−

g(x−h, t)z(x).

(4.8)
Denote

⋆h =
⋆(x1, x2, t)− ⋆(x1 − h, x2, t)

h
,

where ⋆ is a known or unknowm function. Calculating next (3.2)2−(4.8)
h and
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using the previous notation we get:∫
Dε

ρ±
∂wε,h

∂t
(t) ·φ+ cε

2∑
i,j=1

∫
D+

ε

Aij
∂

∂xj

(∫ t

0

wε,h(s) ds

)
· ∂φ
∂xi

+ 2(µ+ χ)

∫
D−
D(wε,h(t)) : D(φ)− χ

∫
D−
curlωε,h(t) ·φ+ j

∫
D−

∂ωε,h

∂t
(t)z

+ γ

∫
D−

∇ωε,h(t) · ∇z + 2χ

∫
D−
ωε,h(t) z − χ

∫
D−
z curlwε,h(t)

=

∫
Dε

fε,h(t) ·φ+

∫
D−

gh(t)z (∀) (φ, z) ∈Wε × V, in L2(0, T ). (4.9)

On the other hand, let us consider the variational problem (3.2) corresponding

to the data
(

∂hε

∂x1
, ∂f
∂x1

, ∂g
∂x1

)
. Due to (4.3), these new data have at least the

regularity (3.1) and the unique solution of (3.2) corresponding to these new
data, denoted (w∗

ε , ω
∗
ε ), has the regularity given by (3.2)1. Calculating (3.2)2

corresponding to
(

∂hε

∂x1
, ∂f
∂x1

, ∂g
∂x1

)
–(4.9), using the estimates obtained in the

proof of Theorem 1 and taking into account that

lim
h→0

∥∥∥∥hε,h − ∂hε

∂x1

∥∥∥∥
L2(0,T ;(L2

#(D+
ε ))2)

= 0,

lim
h→0

∥∥∥∥fh − ∂f

∂x1

∥∥∥∥
L2(0,T ;(L2

#(D−)2)

= 0, lim
h→0

∥∥∥∥gh − ∂g

∂x1

∥∥∥∥
L2(0,T ;L2

#(D−))

= 0,

we obtain wε,h → w∗
ε , ωε,h → ω∗

ε as h → 0 strongly with respect to all norms
appearing in the estimates established in the proof of Theorem 1. This means
that (

∂wε

∂x1
,
∂ωε

∂x1

)
= (w∗

ε , ω
∗
ε ) ∈ HWε

×HV . (4.10)

Consider next ψ ∈ (C∞
0 (D−))2; then we can take φ = ∂ψ

∂x1
in (3.24) and,

integrating by parts all the terms and using (4.10), we obtain

ρ−
∂v∗

ε

∂t
(t)−2(µ+χ)div(D(v∗

ε(t))−χcurlω∗
ε (t)−

∂f

∂x1
(t)=−∇∂q0,ε

∂x1
(t)

in (H−1(D−))2, a.e. in (0, T ),
(4.11)

where v∗
ε = w∗

ε/
D−×(0,T )

. This gives
∂q0,ε
∂x1

(t) ∈ L2(D−), a.e. in (0, T ). On

the other hand, considering the problem (3.2) that corresponds to the data(
∂hε

∂x1
, ∂f
∂x1

, ∂g
∂x1

)
and proceeding as in Lemma 1 we obtain the existence of an

unique q∗0,ε ∈ L2(0, T ;L2(D−)) such that:

ρ−
∂v∗

ε

∂t
(t)−2(µ+χ)div(D(v∗

ε(t))−χcurlω∗
ε (t)−

∂f

∂x1
(t)=−∇q∗0,ε(t)

in L2(0, T ; (H−1(D−))2),
(4.12)∫

D−
q∗0,ε(t)dx = 0 a.e. in (0, T ).
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Subtracting (4.11) and (4.12) and taking into account that D− is a connected
set it follows that for some α = α(t) we have

∂q0,ε
∂x1

= q∗0,ε + α in L2(D−), a.e. in (0, T ). (4.13)

We establish in what follows the regularity of the function α. To this aim, let
us take φ = φ1e1, φ1 ∈ H1

0 (D
−) as test function in (3.24). For the term that

contains the pressure we proceed as follows:

−
∫
D−

q0,ε(t)divφ = −
∫
D−

q0,ε(t)
∂φ1

∂x1
=

〈
∂q0,ε(t)

∂x1
, φ1

〉
H−1(D−),H1

0 (D
−)

=

∫
D−

∂q0,ε(t)

∂x1
φ1,

the last equality being a consequence of the regularity given by (4.13). Using
again (4.13) we get:

ρ−
∫
D−

∂(vε)1
∂t

(t)φ1 + 2(µ+ χ)

∫
D−

D(vε(t)) : D(φ1e1)− χ

∫
D−

∂ωε

∂x2
(t)φ1

−
∫
D−
f1(t)φ1 = −

∫
D−

∂q0,ε
∂x1

(t)φ1 = −
∫
D−

(
q∗0,ε(t) + α(t)

)
φ1 a.e. in (0, T )

or

−α(t)
∫
D−

φ1 = ρ−
∫
D−

∂(vε)1
∂t

(t)φ1 + 2(µ+ χ)

∫
D−
D(vε(t)) : D(φ1e1)

−χ
∫
D−

∂ωε

∂x2
(t)φ1 −

∫
D−
f1(t)φ1 +

∫
D−
q∗0,ε(t)φ1 (∀)φ1 ∈ H1

0 (D
−),

a.e. in (0, T ).

(4.14)

Choosing φ1 ∈ H1
0 (D

−) with
∫
D− φ1 ̸= 0 and taking into account that the

right hand side of (4.14) is an element of L2(0, T ) from (3.2)1, (3.1)2 and the
regularity of q∗0,ε, we conclude that α ∈ L2(0, T ) which gives, together with
(4.13), the regularity (4.4)2 that completes the proof. ⊓⊔

The main results concerning the regularity of the unknown functions are given
by the next two theorems.

Theorem 3. Let (wε, ωε) be the unique solution to (3.2), vε defined by (3.16)2
and q0,ε the unique function introduced in Lemma 1. Then,

vε ∈ L2(0, T ; (H2(D−))2), q0,ε ∈ L2(0, T ;H1(D−)). (4.15)

Proof. Notice that, due to (4.4)1, it follows that
∂vε

∂x1
∈ L2(0, T ; (H1

#(D
−))2);

so, for obtaining (4.15)1, it remains to show that ∂2vε

∂x2
2

∈ L2(0, T ; (L2(D−))2).

Similarly, due to (4.4)2, (4.15)2 is satisfied if
∂q0,ε
∂x2

∈ L2(0, T ;L2(D−)). For
obtaining the desired regularity for the velocity and for the pressure, we replace
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the vectorial equation (3.17) with two scalar equations in L2(0, T ;H−1(D−)),
written in a convenient way, as below:

−(µ+χ)
∂2(vε)1
∂x22

= −ρ− ∂(vε)1
∂t

+ (µ+χ)
∂2(vε)1
∂x21

+ χ
∂ωε

∂x2
+ f1 −

∂q0,ε
∂x1

−(µ+χ)
∂2(vε)2
∂x22

+
∂q0,ε
∂x2

= −ρ− ∂(vε)2
∂t

+ (µ+χ)
∂2(vε)2
∂x21

− χ
∂ωε

∂x1
+ f2

(4.16)

For passing from (3.17) to (4.16) we took into account that 2div(D(v)) = ∆v
if divv = 0.

Using the regularity provided by Theorem 1 and by (4.4) it follows that the
right hand side of (4.16)1 is an element of L2(0, T ;L2(D−)), that gives

∂2(vε)1
∂x22

∈ L2(0, T ;L2(D−))

and so
(vε)1 ∈ L2(0, T ;H2(D−)). (4.17)

For obtaining the same regularity for the second component of the velocity it

remains to prove that ∂2(vε)2
∂x2

2
∈ L2(0, T ;L2(D−)) since we already know that

∂(vε)2
∂x1

∈ L2(0, T ;H1(D−)) from (4.4)1. Consider Ψ ∈ L2(0, T ;H1
0 (D

−)) and

denote ⟨·, ·⟩ the duality pairing between L2(0,T ;H−1(D−)) and
L2(0,T ;H1

0 (D
−)). Then,〈

∂2(vε)2
∂x22

, Ψ

〉
= −

〈
∂(vε)2
∂x2

,
∂Ψ

∂x2

〉
=

〈
∂(vε)1
∂x1

,
∂Ψ

∂x2

〉
= −

〈
∂2(vε)1
∂x1∂x2

, Ψ

〉
(∀)Ψ ∈ L2(0, T ;H1

0 (D
−)),

since divvε = 0 in D−. This means that

∂2(vε)2
∂x22

= −∂
2(vε)1
∂x1∂x2

in L2(0, T ;H−1(D−))

and, with (4.17), we get

∂2(vε)2
∂x22

∈ L2(0, T ;L2(D−))

and hence
(vε)2 ∈ L2(0, T ;H2(D−)). (4.18)

Returning to (4.16)2 and using (4.18) we obtain

∂q0,ε
∂x2

∈ L2(0, T ;L2(D−)). (4.19)

The regularity (4.15) follows as an obvious consequence of (4.17), (4.18), (4.4)2
and (4.19), that achieves the proof. ⊓⊔
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4.2 Regularity of the displacement

Recall that the elastic medium is composed by p horizontal elastic layers with
constant densities and constant matrix valued elasticity coefficients. For any
s ∈ {1, ..., p} consider an arbitrary function ψs : Dε 7→ R2 with the properties
ψs ∈ (C∞(Dε))

2, supp ψs ⊂⊂ D+,s
ε and take as test function in (3.2)2 (φ, z) =

(ψs, 0). This gives:

ρ+,s ∂
2uε

∂t2
− cε

2∑
i,j=1

∂

∂xi

(
As

ij

∂uε

∂xj

)
= hε in L2(0, T ; (H−1(D+,s

ε ))2). (4.20)

A first additional regularity for the displacement is obtained as a consequence
of (4.4)1 and of the definition of uε, (3.16)1, namely

∂uε

∂x1
∈ H1(0, T ; (H1

#(D
+
ε ))

2). (4.21)

Theorem 4. If the regularity assumptions (3.1), (4.3) hold, then,

uε ∈ L2(0, T ; (H2
#(D

+,s
ε ))2) (∀) s ∈ {1, ..., p}. (4.22)

Proof. We use the same ideas as in the previous theorem. We leave in the

left hand side of (4.20) the term with unknown regularity, As
22

∂2uε

∂x2
2
, and we use

for all the other terms the regularity provided by (4.3)1, by Theorem 1 and by
(4.21). ⊓⊔

Remark 10. The regularity (4.22) established in the previous theorem for the
displacement allows us to write the equation (4.20) in L2(0, T ; (L2

#(D
+,s
ε ))2)

for every s ∈ {1, ..., p}.

4.3 Uniqueness of the fluid pressure, return to the physical system

In the end of this article we obtain the uniqueness of the pressure and, starting
from the variational problem (3.2), we return to the physical system (2.3).

Theorem 5. Suppose that the assumptions (3.1) and (4.3) are fulfilled. Then,
there exists an unique element pε ∈ L2(0, T ;H1(D−))∩L2(0, T ;L2

#(D
−)) such

that (uε,vε, ωε, pε) is solution to the physical problem (2.3), with (wε, ωε) the
unique solution to the variational problem (3.2) and uε,vε defined by (3.16).

Proof. The equation for microrotation coupled with velocity, represented by
(4.2)1, is

j
∂ωε

∂t
− γ∆ωε + 2χωε − χcurl vε = g in L2(0, T ;L2

#(D
−)), (4.23)

with all the terms having at least this regularity. As a consequence, we obtain
the relation (4.23) a.e. in D− × (0, T ). By means of the 1−periodicity in x1,
we extend it to L− × (0, T ), obtaining in this way (2.3)4.



Micropolar Fluid-Thin Elastic Structure Interaction 663

The equations for the displacement, (2.3)1, s ∈ {1, ..., p} are obtained as a
consequence of (4.20) written in L2(0, T ; (L2

#(D
+,s
ε ))2) (see Remark 10). In-

deed, from (4.20) we obtain the same equation a.e. in D+,s
ε × (0, T ) and,

extending it by periodicity to the infinite layer L+,s
ε as before, we get (2.3)1.

Since the boundaries that separate the elastic layers are of measure zero,
we obtain, as a consequence of (2.3)1

ρ+
∂2uε

∂t2
− cε

2∑
i,j=1

∂

∂xi

(
Aij

∂uε

∂xj

)
= hε a.e. in L+

ε × (0, T ).

We obtain next the junction conditions (2.3)7. To this aim, consider ψs :
Dε 7→ R2 with the properties ψs ∈ (C∞(Dε))

2, supp ψs ⊂⊂ (D+,s
ε ∪D+,s+1

ε ∪
Γ+,s
ε ), s ∈ {1, ..., p − 1} and take as test function in (3.2)2 (φ, z) = (ψs, 0).

This yields:∫
D+,s

ε

ρ+,s ∂
2uε

∂t2
(t) ·ψs +

∫
D+,s+1

ε

ρ+,s+1 ∂
2uε

∂t2
(t) ·ψs

+ cε

2∑
i,j=1

∫
D+,s

ε

As
ij

∂uε

∂xj
(t) · ∂ψs

∂xi
+ cε

2∑
i,j=1

∫
D+,s+1

ε

As+1
ij

∂uε

∂xj
(t) · ∂ψs

∂xi

=

∫
D+,s

ε ∪D+,s+1
ε

hε(t) ·ψs a.e. in (0, T ).

Integrating by parts the third and the fourth terms of the previous relation
and using the equations (4.20) in L2(0, T ; (L2(D+,s

ε ))2) (see Remark 10) and
the regularity (4.22) corresponding to s and to s + 1, we obtain, for any s ∈
{1, ..., p − 1}, the junction conditions (2.3)7 verified a.e. on Γ+,s

ε × (0, T ) and
next extended by periodicity to F+,s

ε × (0, T ).
We obtain in what follows the Stokes equation (2.3)2 and the coupling con-

dition between the fluid and the elastic medium, (2.3)11. Taking into account
the regularity (4.15), Equation (3.17) becomes:

ρ−
∂vε

∂t
−2(µ+χ)div(D(vε))−χcurlωε+∇q0,ε= f in L2(0,T ;(L2(D−))2), (4.24)

all the terms of (4.24) having at least the regularity stated in this equation.

Consider φ ∈ (H1
0 (Dε))

2, φ = 0 in D+
ε \D+,1

ε and calculate

∫
D+,1

ε

(4.20) ·

φ/
D

+,1
ε

,

∫
D−
(4.24) · φ/D− , where (4.20) is considered for s = 1 and written in

L2(0, T ; (L2(D+,1
ε ))2). Adding the corresponding relations, integrating by parts

and using the regularity properties (4.15), (4.22), we get:∫
D+,1

ε

ρ+,1 ∂
2uε

∂t2
(t) ·φ+ cε

2∑
i,j=1

∫
D+,1

ε

A1
ij

∂uε

∂xj
(t) · ∂φ

∂xi

+

∫
D−

ρ−
∂vε

∂t
(t) ·φ+ 2(µ+ χ)

∫
D−

D(vε(t)) : D(φ)

−χ
∫
D−
curlωε(t) ·φ−

∫
D−

q0,ε(t)div φ
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−
∫
Γ 0

(−q0,ε(t)e2 + 2(µ+ χ)D(vε(t))e2) ·φ dx1

+cε

∫
Γ 0

2∑
j=1

A1
2j

∂uε

∂xj
·φ dx1 =

∫
Dε

fε(t) ·φ

(∀)φ ∈ (H1
0 (Dε))

2,φ = 0 in D+
ε \D+,1

ε , in L2(0, T ).

(4.25)

Remark 11. It was possible to write the last two terms of the left hand side of
(4.25) in this form due to (4.15) and (4.22) for s = 1.

Let us denote

Fε(t) = −q0,ε(t)e2 + 2(µ+ χ)D(vε(t))e2 − cε

2∑
j=1

A1
2j

∂uε

∂xj
(t).

Taking in (4.25) a test function φ with the additional property div φ = 0 in
D− and, using (3.2)2 written for (φ, 0), we get:∫

Γ 0

Fε(t) ·φ dx1 = 0 (∀)φ ∈ (H1
0 (Dε))

2, φ = 0 in D+
ε \D+,1

ε ,

div φ = 0 in D−, in L2(0, T ).
(4.26)

Define the space:

(H1/2(Γ 0))2 =
{
ψ ∈ (H1/2(∂D−))2

/
ψ = 0 on ∂D−\Γ 0

}
,

and, for any ψ ∈ (H1/2(Γ 0))2 with
∫
Γ 0 ψ2(x1, 0)dx1 = 0, consider the problem φ̃ ∈ (H1(D−))2,

div φ̃ = 0 in D−,
φ̃ = ψ on ∂D−.

(4.27)

Using the known result that problem (4.27) has at least one solution φ̃, we
will construct a test function for (4.26) starting from φ̃, as follows. Define
φ̂ : Dε 7→ R2 by

φ̂(x1, x2) =

{
φ̃(x1, x2) if (x1, x2) ∈ D−,
φ̃(x1,−x2) if (x1, x2) ∈ Dε\D−.

Consider next another function φ+
ε,1 : [−1, ε] 7→ R with φ+

ε,1(x2) = 1 if x2 ∈
[−1, 0], φ+

ε,1(x2) = 0 if x2 ∈ [ζ1ε, ε], 0 ≤ φ+
ε,1(x2) ≤ 1 (∀)x2 ∈ [−1, ε] and φ+

ε,1 ∈
C∞([−1, ε]). It is easy to show that the function φ : Dε 7→ R2, φ(x1, x2) =
φ+
ε,1(x2)φ̂(x1, x2) (∀)(x1, x2) ∈ Dε has all the properties for being test function

for (4.26). So, relation (4.26) may be written as:∫
Γ 0

Fε(t) ·ψ dx1=0 (∀)ψ∈(H1/2(Γ 0))2, s. t.

∫
Γ 0

ψ2(x1, 0)dx1=0, in L2(0,T ).

This means that φ 7→
∫
Γ0

Fε(t) · φdx1 is a linear and continuous functional

on the space (H1/2(Γ 0))2 that vanishes on the subspace characterized by the
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linear contraint
∫
Γ 0 ψ2(x1, 0) dx1 = 0. Hence, there exists an unique Lagrange’s

multiplier corresponding to this contraint, denoted λε(t), such that we have a.e.
in (0,T):∫

Γ 0

Fε(t) ·ψ − λε(t)

∫
Γ 0

ψ2(x1, 0) dx1 = 0 (∀)ψ ∈ (H1/2(Γ 0))2 a.e. in (0, T ).

(4.28)
Due to the regularity of the first term of (4.28) we infer that

λε ∈ L2(0, T ), (4.29)

that allows us to write (4.28) in L2(0, T ). Define

pε = q0,ε + λε. (4.30)

The uniqueness of pε follows from the definition of Fε and from the uniqueness
of uε,vε, q0,ε, λε. The regularity pε ∈ L2(0, T ;H1(D−)) ∩ L2(0, T ;L2

#(D
−))

is a consequence of (4.1)2, (4.15)2 and (4.29). Since the difference between
pε and q0,ε is a function depending only on time, the Stokes equation for the
micropolar fluid corresponding to q0,ε, (4.24), is satisfied if we replace q0,ε with
pε, which means that relation (2.3)2 holds a.e. in D− × (0, T ). By means of
Remark 5, we obtain the same relation a.e. in D−

k × (0, T ), (∀) k ∈ Z and so,
the Stokes equations for the micropolar fluid hold a.e. in L− × (0, T ).

We show next that relation (4.28) leads to the junction condition (2.3)11
with pε defined by (4.30). To this aim, consider ψ0 : [0, 1] 7→ R2 with ψ0 ∈
(C∞

0 (0, 1))2 and define φ : D− 7→ R2, φ(x1, x2) = ψ0(x1)(1+x2) (∀) (x1, x2) ∈
D−. If we define ψ = φ/∂D− , it is obvious that ψ ∈ (H1/2(Γ 0))2. Considering

this test function in (4.28) and denoting

F̃ε(t) = −pε(t)e2 + 2(µ+ χ)D(vε(t))e2 − cε

2∑
j=1

A1
2j

∂uε

∂xj
(t),

we obtain∫
Γ 0

F̃ε(t) ·ψ0dx1 = 0 (∀)ψ0 ∈ (C∞
0 (0, 1))2, in L2(0, T ), (4.31)

and, by density of (C∞
0 (0, 1))2 in (L2(Γ 0))2, it follows that

F̃ε = 0 a.e. on Γ 0 × (0, T ),

i.e., the junction condition between the fluid and the elastic medium, on Γ 0 ×
(0, T ), extended then by periodicity on F 0 × (0, T ).

Remark 12. From the density (C∞
0 (0, 1))2 in (L2(Γ 0))2 it is possible to take in

(4.31) ψ0 = e2, that gives

λε(t) =

∫
Γ 0

Fε(t) · e2dx in L2(0, T ).

Math. Model. Anal., 29(4):641–668, 2024.
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To achieve the proof of the theorem it remains to obtain the boundary condition
(2.3)5. For this purpose, we consider a function φ ∈ (H1(D+,p))2 with φ = 0
on ∂D+,p\Γ+

ε . Denoting also by φ the previous function extended by 0 in
Dε\D+,p, we obtain a pair (φ, 0) which is test function for (3.2)2 and so:

ρ+,p

∫
D+,p

ε

∂2uε

∂t2
(t) ·φ+ cε

2∑
i,j=1

∫
D+,p

ε

Ap
ij

∂uε

∂xj
(t) · ∂φ

∂xi
=

∫
D+,p

ε

hε(t) ·φ

(∀)φ ∈ (H1(D+,p))2,φ = 0 on ∂D+,p\Γ+
ε , in L2(0, T ).

(4.32)
Integrating by parts the second term of (4.32) and using (4.20) and (4.22) for
s = p we get the condition (2.3)5 verified first a.e. on Γ+

ε × (0, T ) and then
extended by periodicity to F+

ε × (0, T ). ⊓⊔
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