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Abstract. This paper investigates Ulam stability of delay fractional

difference equations. First, a useful equality of double fractional

sums is employed and discrete Gronwall’s inequality of delay type

is provided. A delay discrete-time Mittag-Leffler function is used

and its non-negativity condition is given. With the solutions’ ex-

istences, Ulam stability condition is presented to discuss the error

estimation of exact and approximate solutions.
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1 Introduction

In 1940, Ulam [24] proposed a problem related to the stability of group homo-
morphism: Let G1 be a group and G2 is a metric group. For a given ε > 0,
there exists δ > 0 such that for any x and y ∈ G1, the mapping p satisfying an
inequality

d(p(xy), p(x)p(y)) < δ,

whether there is a homomorphism T : G1 → G2, for all x ∈ G, it satisfies

d(p(x), T (x)) < ε?

If the answer to this question is yes, it is said that the functional equation
corresponding to the homomorphism T (xy) = T (x)T (y) is stable.

One year later, Hyers [18] gave an answer to the Ulam problem. He extended
the stability of group homomorphisms to the stability in Banach spaces. Let
p : E1 → E2 be a mapping between the Banach spaces E1 and E2, if

∥p(x+ y)− p(x)− p(y)∥ ≤ ε (x, y ∈ E1) ,
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where ε > 0 is a constant. Then for any x ∈ E1, the limit

T (x) = lim
n→∞

2−np (2nx)

exists, and T is the only class additive mapping that satisfies

∥p(x)− T (x)∥ ≤ ε.

During 1978-1988, Rassias established the Hyers-Ulam stability theory of
linear and nonlinear mappings [22]. In recent years, many researchers have
paid attention to Ulam stability and obtained rich results. Rezaei used Laplace
transform method to study the Hyers-Ulam stability of linear differential equa-
tions [23]. Wang used the Gronwall’s inequality [28] to discuss Ulam stability
and data dependence of fractional differential equation [25]. It plays an impor-
tant role in theories of fractional differential equations.

Fractional difference equations become popular very recently [1, 4, 15], for
example, boundary value problem [13], right fractional difference equations [27],
neural networks [16], aftershock modeling [19], interval-valued system [17], and
Laplace transform [6]. Due to extensive applications, the Gronwall’s inequality
was proposed in [26] and paid much attention by other researchers.

Discrete Gronwall’s inequalities without delay were given in [5, 14, 26] for
the fractional difference equation

C∆ν
ax(t) = g(t+ ν)x(t+ ν), t ∈ Na+1−ν . (1.1)

Alzabut et al. [3], Du et al. [11] and Chen et al. [8] also gave serval other
Gronwall’s inequalities in the discrete fractional calculus.

The fractional difference equation

C∆ν
ax(t) = g(t+ ν − 1)x(t+ ν − 1), t ∈ Na+1−ν , (1.2)

has one delay term as g(t + ν − 1)x(t + ν − 1). Equations (1.1) and (1.2) are
totally different. The fractional nonlinear difference equation of delay type has
rich nonlinear dynamics in [16] and Equation (1.2) can be considered as the
linearized version.

Gronwall’s inequality is the fundamental one in mathematical modelling
and analysis. This paper investigates the following fractional sum inequality

xn+1 ⩽ fn +
1

Γ (ν)

n∑
j=0

Γ (n− j + ν)

Γ (n− j + 1)
gjxj , 0 ≤ n, 0 < ν ≤ 1,

where fn and gn are non-negative and non-decreasing functions.
The rest of the paper is organized as follows. In Section 2, the concept

and some properties of discrete fractional calculus are explained. In Section 3,
the non-negativity condition of Mittag-Leffler function is given. In Section 4,
the discrete Gronwall’s inequality of delay type is given. In Section 5, the
uniqueness of fractional difference equations are discussed by using Banach
fixed point theorem and Ulam stability of fractional difference equations is
studied.
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2 Preliminaries

Suppose Na := {a, a + 1, . . .}, a ∈ R. For any ν ∈ R, the falling factorial
functional is defined by [15]

t(ν) = Γ (t+ 1)/Γ (t+ 1− ν), t ∈ Nν ,

where Γ denotes the famous Gamma function.
We use the following definitions in this paper.

Definition 1. [15] Let x : Na → R and ν > 0 be given. Then the ν-th order
fractional sum of x is given by

∆−ν
a x(t) =

1

Γ (ν)

t−ν∑
s=a

(t− σ(s))(ν−1)x(s), t ∈ Na+ν ,

where σ(s) = s+ 1.

Definition 2. [15] Let x : Na → R, ν > 0 be given, and N − 1 < ν ≤ N .
Then the ν-th order Riemann-Liouville difference of x is given by

∆ν
ax(t) =


1

Γ (−ν)

t+ν∑
s=a

(t− σ(s))(−ν−1)x(s), N − 1 < ν < N,

∆Nx(t), ν = N.

Definition 3. [15] Let x : Na → R and ν > 0 be given, and N − 1 < ν ≤ N .
Then the ν-th order Caputo difference of x is defined by

C∆ν
ax(t) =


1

Γ (N − ν)

t−(N−ν)∑
s=a

(t− σ(s))(N−ν−1)∆Nx(s), N − 1 < ν < N,

∆Nx(t), ν = N.

Lemma 1. [1] Assume that ν > 0 and x : Na → R, then,

∆−ν
a+N−ν

C∆ν
ax(t) = x(t)−

N−1∑
k=0

(t− a)(k)

k!
∆kx(a), t ∈ Na+1,

where N − 1 < ν ≤ N .

Lemma 2. [15] Let a ∈ R and µ > 0 be given, then,

∆(t− a)(µ) = µ(t− a)(µ−1).

Furthermore, for ν > 0, the fractional difference and sum of the discrete power
law function hold

∆−ν
a+µ(t− a)(µ) = µ(−ν)(t− a)(µ+ν), t ∈ Na+µ+ν ,

∆ν
a+µ(t− a)(µ) = µ(ν)(t− a)(µ−ν), t ∈ Na+µ+N−ν .

Particularly, the fractional sum of a constant C holds

∆−ν
a+1−νC =

(t− σ(a) + ν)(ν)

Γ (ν + 1)
C, t ∈ Na+1.
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3 Delay Mittag-Leffler functions

Let a ∈ R and ν > 0. The delay discrete–time Mittag-Leffler function is defined
in [1]

eν(λ, (t− σ(a))(ν)) :=

∞∑
k=0

λk(t− a+ kν − k)(kν)

Γ (kν + 1)
, 0 < ν ⩽ 1, t ∈ Na+1. (3.1)

We note that the function is a piece-wise one as

eν(λ, (t− σ(a))(ν)) =



1 + λ, t = a+ 1,

1 + λ(1 + ν)(ν)/Γ (ν + 1) + λ2, t = a+ 2,

. . .
n∑

k=0

λk(n+ kν − k)(kν)

Γ (kν + 1)
, t = a+ n.

It is given in the form of a finite summation and there is no need to discuss the
convergence. That is, λ is arbitrary. We give the asymptotic and non-negativity
conditions as the following.

Theorem 1. (Asymptoticity) [2] The delay discrete–time Mittag-Leffler func-
tion (3.1) is asymptotically stable

lim
t→∞

eν(λ, (t− σ(a))(ν)) = 0,

if −2ν < λ < 0.

Theorem 2. (Non-negativity) The solution of the initial value problem{
C∆ν

ax(t) = λx(t+ ν − 1), 0 < ν ⩽ 1, t ∈ Na+1−ν ,
x(a) = 1,

(3.2)

is non–negative if λ > −ν.

Proof. We use the relationship of the Riemann-Liouville and Caputo differ-
ence:

C∆ν
ax(t) = ∆ν

a(x(t)− x(a)).

So, Equation (3.2) can be rewritten as a fractional difference equation of R-L
type:{

∆ν
ax(t) = x(a)(t− a)(−ν)/Γ (1− ν) + λx(t+ ν − 1), t ∈ Na+1−ν ,

x(a) = 1,

which leads to the numerical scheme:

1

Γ (−ν)

n∑
j=0

Γ (n− j − ν)

Γ (n− j + 1)
x(a+ j) = x(a)

Γ (n+ 1− ν)

Γ (1− ν)Γ (n+ 1)
+ λx(a+ n− 1).



Discrete Gronwall’s inequality for Ulam stability 173

As a result, we collect

x(a+ n) =x(a)
Γ (n+ 1− ν)

Γ (1− ν)Γ (n+ 1)
+ (λ+ ν)x(a+ n− 1)

− 1

Γ (−ν)

n−2∑
j=0

Γ (n− j − ν)

Γ (n− j + 1)
x(a+ j).

Since 0 < ν < 1 and Γ (−ν) < 0, the solution x(t) is non-negative if λ+ ν > 0.
The proof is completed. ⊓⊔

4 Discrete Gronwall’s inequality of delay type

Lemma 3. Let a ∈ R and ν > 0. Suppose the following iteration equation
holds{

F0(t) = ∆−ν
a+1−νh(t+ ν − 1),

Fk+1(t) = ∆−ν
a+1−νFk(t+ ν − 1), t ∈ Na+1, k = 0, 1, 2, . . . ,

(4.1)

then,

Fk(t) =

t−ν∑
s=a+1−ν

(t+ k(ν − 1)− σ(s))(kν+ν−1)

Γ (kν + ν)
h(s+ ν − 1).

Proof. From (4.1), it can be seen that

F0(t) =

t−ν∑
s=a+1−ν

(t− σ(s))(ν−1)

Γ (ν)
h(s+ ν − 1), t ∈ Na+1.

Suppose that

Fk(t) =

t−ν∑
s=a+1−ν

(t+ k(ν − 1)− σ(s))(kν+ν−1)

Γ (kν + ν)
h(s+ ν − 1), t ∈ Na+1

holds, then for k + 1

Fk+1(t) = ∆−ν
a+1−νFk(t+ ν − 1) =

1

Γ (kν + ν)Γ (ν)

×
t−ν∑

r=a+1−ν

(t−σ(r))(ν−1)
r−1∑

s=a+1−ν

(r+(k+1)(ν−1)−σ(s))(kν+ν−1)h(s+ν−1).

By interchanging the order of summation, we obtain

Fk+1(t) =
1

Γ (kν + ν)Γ (ν)

t−ν−1∑
s=a+1−ν

t−ν∑
r=s+1

(t− σ(r))(ν−1)

× (r + (k + 1)(ν − 1)− σ(s))(kν+ν−1)h(s+ ν − 1).

Math. Model. Anal., 30(1):169–185, 2025.
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By Definition 1, we give

1

Γ (kν + ν)Γ (ν)

t−ν∑
r=s+1

(t−σ(r))(ν−1)(r+(k+1)(ν − 1)− σ(s))(kν+ν−1)

× h(s+ ν − 1) = ∆−ν
b+(k+1)ν−1−k

(t− b)(kν+ν−1)

Γ (kν + ν)
h(s+ ν − 1)

= ∆−ν
b+(k+1)ν−1

(t− b)(kν+ν−1)

Γ (kν + ν)
h(s+ ν − 1), b = s− (k + 1)ν + 2 + k.

According to Lemma 2,

∆−ν
b+(k+1)ν−1

(t− b)(kν+ν−1)

Γ (kν + ν)
h(s+ ν − 1) =

(t− b)(kν+2ν−1)

Γ (kν + 2ν)
h(s+ ν − 1)

=
(t+ (k + 1)(ν − 1)− σ(s))(kν+2ν−1)

Γ (kν + 2ν)
h(s+ ν − 1), t ∈ Na+1.

Therefore,

Fk+1(t) =

t−ν−1∑
s=a+1−ν

(t+ (k + 1)(ν − 1)− σ(s))(kν+2ν−1)

Γ (kν + 2ν)
h(s+ ν − 1)

=

t−ν∑
s=a+1−ν

(t+ (k + 1)(ν − 1)− σ(s))(kν+2ν−1)

Γ (kν + 2ν)
h(s+ ν − 1), t ∈ Na+1,

which completes the proof. ⊓⊔

Theorem 3. Let K be an arbitrary constant and λ be a non-negative one. If
x(t) satisfies

x(t) ⩽ K + λ∆−ν
a+1−νx(t+ ν − 1), t ∈ Na+1,

then it is bounded by

x(t) ⩽ Keν(λ, (t− σ(a))(ν)), t ∈ Na+1.

Proof. Let u(t) = K+λ∆−ν
a+1−νx(t+ ν− 1), t ∈ Na+1. Then, x(t) ⩽ u(t) and

u(a) = K. The following formula holds for λ > 0

C∆ν
au(t) = λx(t+ ν − 1) ⩽ λu(t+ ν − 1).

We construct the following nonhomogeneous equation:{
C∆ν

au(t) = λu(t+ ν − 1)− h(t+ ν − 1), t ∈ Na+1−ν ,
u(a) = K,

where h(t+ ν − 1) ⩾ 0. Using Lemma 1, we get

u(t) = K +∆−ν
a+1−ν(λu(t+ ν − 1)− h(t+ ν − 1)), t ∈ Na+1.
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By Picard’s method, we get the successive iteration as

um+1(t) = u0(t) + λ∆−ν
a+1−νum(t+ ν − 1), m = 0, 1, 2, . . . ,

where u0(t) = K −∆−ν
a+1−νh(t+ ν − 1).

For m = 0, we get

u1(t) =u0(t) + λ∆−ν
a+1−νu0(t+ ν − 1)

=K −∆−ν
a+1−νh(t+ ν − 1) + λ∆−ν

a+1−ν

(
K − F0(t+ ν − 1)

)
=K +K

λ(t− a+ ν − 1)(ν)

Γ (ν + 1)
− F0(t)− λF1(t),

and for m = 1,

u2(t) = u0(t) + λ∆−ν
a+1−νu1(t+ ν − 1) = K −∆−ν

a+1−νh(t+ ν − 1)

+ λ∆−ν
a+1−ν

(
K+K

λ(t− a+ 2ν − 2)(ν)

Γ (ν + 1)
−F0(t+ ν − 1)−λF1(t+ ν − 1)

)
= K +K

λ(t− a+ ν − 1)(ν)

Γ (ν + 1)
+K

λ2(t− a+ 2ν − 2)(2ν)

Γ (2ν + 1)
−F0(t)−λF1(t)

− λ2F2(t).

More generally, we have

um(t) = K

1 +

m∑
k=1

λk(t− a+ kν − k)(kν)

Γ (kν + 1)

−
m∑

k=0

λkFk(t),

m∑
k=0

λkFk(t) =

m∑
k=0

t−ν∑
s=a+1−ν

λk(t− σ(s) + kν − k)(kν+ν−1)

Γ (kν + ν)
h(s+ ν − 1).

Let m → ∞, then,

u(t) =K

∞∑
k=0

λk(t− a+ kν − k)(kν)

Γ (kν + 1)

−
t−ν∑

s=a+1−ν

∞∑
k=0

λk(t− σ(s) + kν − k)(kν+ν−1)

Γ (kν + ν)
h(s+ ν − 1).

Therefore, we obtain

x(t) ≤ Keν(λ, (t− σ(a))(ν)), t ∈ Na+1.

⊓⊔

Theorem 4. Let g : Na → R be a non-negative and non-decreasing function.
K is an arbitrary constant. If x(t) satisfies

x(t) ⩽ K +∆−ν
a+1−νg(t+ ν − 1)x(t+ ν − 1),

then, the following inequality holds

x(t) ⩽ Keν(g(t− 1), (t− σ(a))(ν)), t ∈ Na+1.

Math. Model. Anal., 30(1):169–185, 2025.
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Proof. Assume u(t) = K +∆−ν
a+1−νg(t+ ν − 1)x(t+ ν − 1), t ∈ Na+1. Then,

x(t) ⩽ u(t) and u(a) = K. The following formula holds

C∆ν
au(t) = g(t+ ν − 1)x(t+ ν − 1) ⩽ g(t+ ν − 1)u(t+ ν − 1).

We use the following nonhomogeneous equation:{
C∆ν

au(t) = g(t+ ν − 1)u(t+ ν − 1)− h(t+ ν − 1), t ∈ Na+1−ν ,
u(a) = K,

where h(t+ ν − 1) ⩾ 0.
By Picard’s method, we get the successive iteration as

um+1(t) = u0(t) +∆−ν
a+1−νg(t+ ν − 1)um(t+ ν − 1), m = 0, 1, 2, . . . ,

where u0(t) = K −∆−ν
a+1−νh(t+ ν − 1).

Assume{
G0(t) = K,
Gk+1(t) = ∆−ν

a+1−νg(t+ ν − 1)Gk(t+ ν − 1), k = 0, 1, 2, . . . ,

and{
H0(t) = ∆−ν

a+1−νh(t+ ν − 1),
Hk+1(t) = ∆−ν

a+1−νg(t+ ν − 1)Hk(t+ ν − 1), k = 0, 1, 2, . . . , t ∈ Na+1.

For m = 0, we get

u1(t) =u0(t) +∆−ν
a+1−νg(t+ ν − 1)u0(t+ ν − 1)

=K −∆−ν
a+1−νh(t+ ν − 1) +∆−ν

a+1−νg(t+ ν − 1)
(
K −H0(t+ ν − 1)

)
=G0(t) +G1(t)−H0(t)−H1(t).

It can be obtained from the non–negativity of g

u1(t) ⩽ G0(t) +G1(t), t ∈ Na+1.

g is a non-decreasing function such that

u1(t) ⩽ K +K
g(t− 1)(t− a+ ν − 1)(ν)

Γ (ν + 1)
, t ∈ Na+1.

For m = 1, we get

u2(t) =u0(t) +∆−ν
a+1−νg(t+ ν − 1)u1(t+ ν − 1)

=K −∆−ν
a+1−νh(t+ ν − 1) +∆−ν

a+1−νg(t+ ν − 1)

×
(
K +KG0(t+ ν − 1)−H0(t+ ν − 1)−H1(t+ ν − 1)

)
=G0(t) +G1(t) +G2(t)−H0(t)−H1(t)−H2(t).
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Since each Hi(t) is non-negative, we give

u2(t) ⩽ G0(t) +G1(t) +G2(t),

u2(t) ⩽ K +K
g(t− 1)(t− a+ ν − 1)(ν)

Γ (ν + 1)
+K

g2(t− 1)(t− a+ 2ν − 2)(2ν)

Γ (2ν + 1)
.

More generally, we have

um(t) ⩽
m∑

k=0

Gk(t)−
m∑

k=0

Hk(t),

um(t) ⩽ K

m∑
k=0

gk(t− 1)(t− a+ kν − k)(kν)

Γ (kν + 1)
, t ∈ Na+1.

Let m → ∞

u(t) ⩽ K

∞∑
k=0

gk(t− 1)(t− a+ kν − k)(kν)

Γ (kν + 1)
.

Therefore,

x(t) ≤ u(t) ≤ Keν(g(t− 1), (t− σ(a))(ν)), t ∈ Na+1.

⊓⊔

In [12], Ferreira gave a Gronwall’s inequality for the Riemann-Liouville frac-
tional difference equation. We give a more general one by Picard’s method.

Theorem 5. Let g : Na → R be a non-decreasing and non-negative function.
Let q(t) = f(t)g(t) and q : Na → R is a non-decreasing function. If x(t)
satisfies

x(t) ⩽ f(t− 1) +∆−ν
a+1−νg(t+ ν − 1)x(t+ ν − 1),

then x(t) is bounded by

x(t) ⩽ f(t− 1)eν(g(t− 1), (t− σ(a))(ν)), t ∈ Na+1.

Proof. Assume u(t) = f(t − 1) +∆−ν
a+1−νg(t + ν − 1)x(t + ν − 1), t ∈ Na+1.

Then x(t) ⩽ u(t) and u(a) = f(a− 1). The following formula holds

C∆ν
au(t) ⩽

C∆ν
af(t− 1) + g(t+ ν − 1)u(t+ ν − 1).

We construct the nonhomogeneous equation:{
C∆ν

au(t) =
C∆ν

af(t− 1) + g(t+ ν − 1)u(t+ ν − 1)− h(t+ ν − 1), t ∈ Na+1−ν ,
u(a) = K,

where h(t+ ν − 1) ⩾ 0. By Picard’s method, we get the successive iteration as

um+1(t) = u0(t) +∆−ν
a+1−νg(t+ ν − 1)um(t+ ν − 1), m = 0, 1, . . . ,

Math. Model. Anal., 30(1):169–185, 2025.
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where u0(t) = f(t− 1)−∆−ν
a+1−νh(t+ ν − 1). Suppose that{

M0(t) = f(t− 1),
Mk+1(t) = ∆−ν

a+1−νg(t+ ν − 1)Mk(t+ ν − 1), k = 0, 1, . . . ,

and{
H0(t) = ∆−ν

a+1−νh(t+ ν − 1),
Hk+1(t) = ∆−ν

a+1−νg(t+ ν − 1)Hk(t+ ν − 1), k = 0, 1, . . . , t ∈ Na+1.

For m = 0, we get

u1(t) =u0(t) +∆−ν
a+1−νg(t+ ν − 1)u0(t+ ν − 1)

=f(t− 1)−∆−ν
a+1−νh(t+ ν − 1) +∆−ν

a+1−νg(t+ ν − 1)
(
f(t+ ν − 2)

−H0(t+ ν − 1)
)
= M0(t) +M1(t)−H0(t)−H1(t).

It can be obtained from the non–negativity of g

u1(t) ⩽ M0(t) +M1(t).

Since q(t) = f(t)g(t) is non-decreasing on Na, there is

u1(t) ⩽ f(t− 1) + f(t− 1)
g(t− 1)(t− a+ ν − 1)(ν)

Γ (ν + 1)
.

For m = 1, we get

u2(t) = u0(t) +∆−ν
a+1−νg(t+ ν − 1)u1(t+ ν − 1)

= f(t− 1)−∆−ν
a+1−νh(t+ ν − 1) +∆−ν

a+1−νg(t+ ν − 1)

×
(
M0(t+ν−1)+M1(t+ν−1)−H0(t+ ν − 1)−H1(t+ ν − 1)

)
= M0(t) +M1(t) +M2(t)−H0(t)−H1(t)−H2(t).

It can be obtained from the non–negativity of function g

u2(t) ⩽M0(t) +M1(t) +M2(t).

Because q(t) = f(t)g(t) is non-decreasing on Na, there is

u2(t) ⩽f(t− 1) + f(t− 1)
g(t− 1)(t− a+ ν − 1)(ν)

Γ (ν + 1)

+ f(t− 1)
g2(t− 1)(t− a+ 2ν − 2)(2ν)

Γ (2ν + 1)
.

More generally, we have

um(t) ⩽
m∑

k=0

Mk(t)−
m∑

k=0

Hk(t)
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and

um(t) ⩽ f(t− 1)

m∑
k=0

gk(t− 1)(t− a+ kν − k)(kν)

Γ (kν + 1)
.

Let m → ∞

u(t) ⩽ f(t− 1)

∞∑
k=0

gk(t− 1)(t− a+ kν − k)(kν)

Γ (kν + 1)
,

x(t) ≤ f(t− 1)eν(g(t− 1), (t− σ(a))(ν)), t ∈ Na+1.

⊓⊔

Remark 1. We note that f can be a non-increasing function. Theorem 5 can be
used in state estimation of the Riemann-Liouville fractional difference equation:

∆ν
ax(t) = ϕ(x(t+ ν − 1), t+ ν − 1), 0 < ν ≤ 1, t ∈ Na+1−ν ,

where ϕ is well defined.

Suppose xn = x(a+n), fn = f(a+n) and gn = g(a+n). We can rewrite it as
the following one directly.

Theorem 6. Suppose g : Na → R be a non-decreasing and non-negative func-
tion. Let q(t) = f(t)g(t) and q : Na → R is a non-decreasing function. The
general inequality is given as

xn+1 ⩽ fn +
1

Γ (ν)

n∑
j=0

Γ (n− j + ν)

Γ (n− j + 1)
gjxj ,

which yields

xn+1 ⩽ fneν(gn, n
(ν)), n ≥ 0.

Remark 2. Let g : Na → R be a non-decreasing and non-negative function. Let
q(t) = f(t)g(t) and q : Na → R is a non-decreasing function. By use of the
h–fractional sum [21], a fractional sum inequality is given as

xn+1 ⩽ fn +
hν

Γ (ν)

n∑
j=0

Γ (n− j + ν)

Γ (n− j + 1)
gjxj ,

which leads to

xn+1 ⩽ fneν(h
νgn, (hn)

(ν)), n ≥ 0.

Here the h-fractional Gronwall’s inequality is different from the one in [20]
where the conditions g(t) ≤ M and hνM < 1 are needed (see Theorem 3.1
of [20], pp. 820).
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5 Ulam stability

In this section, we consider the following initial value problem of the fractional
difference equation{

C∆ν
ax(t) = φ(x(t+ ν − 1), t+ ν − 1), 0 < ν ≤ 1, t ∈ Na+1−ν ,

x(a) = c,
(5.1)

where x and φ(x(·), ·) : Na → R. φ(x, t) satisfies the Lipschitz condition

|φ(y, t)− φ(x, t)| ⩽ L|y(t)− x(t)|, L > 0, t ∈ Na+1

and φ(x, t) satisfies φ(0, 0) = 0.
The solution of (5.1) satisfies the fractional sum equation:

x(t) = c+
1

Γ (ν)

t−ν∑
s=a+1−ν

(t− σ(s))(ν−1)φ(x(s+ ν − 1), s+ ν − 1), t ∈ Na+1.

We need to introduce the following fixed point theorem to prove the uniqueness
of the solution of Equation (5.1).

Lemma 4. [7,9] (Banach fixed point theorem) Let X = (X, d) be a nonempty
complete metric space, T : X → X is a compressed mapping on X, then T has
exactly one fixed point.

Let B as the set of all x = {x(t)}t∈Na
with the norm ∥x∥ = sup

t∈Na

|x(t)|. Then,

B is a Banach space. Suppose M > 0, we define the set S = {x(t) | t ∈ Na,
∥x∥ ⩽ M}.
Theorem 7. Equation (5.1) has a unique solution on S if there exists 0 < r <
1 such that

L
(
(t− σ(a) + ν)(ν)

)
/Γ (ν + 1) < r, t ∈ Na+1.

Proof. Define the operator

(Tx)(t) = c+
1

Γ (ν)

t−ν∑
s=a+1−ν

(t− σ(s))(ν−1)φ(x(s+ ν − 1), s+ ν − 1), t ∈ Na+1.

Obviously, x(t) is a solution of (5.1) if it is a fixed point of the operator T .
By Lemma 4, we can know that to prove that problem (5.1) has a unique

solution, that is, to prove that T is a contractive mapping.
First, we prove that T maps S in S. Assume that |c| ≤ (1− r)M. Then,

|(Tx)(t)| ≤|c|+ | 1

Γ (ν)

t−ν∑
s=a+1−ν

(t− σ(s))(ν−1)φ(x(s+ ν − 1), s+ ν − 1)|

≤|c|+ L
1

Γ (ν)

t−ν∑
s=a+1−ν

(t− σ(s))(ν−1)|x(s+ ν − 1)|

≤|c|+ML
(t− σ(a) + ν)(ν)

Γ (ν + 1)
≤ M.
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So, we have ∥(Tx)(t)∥ ≤ M , which implies that T maps S in S.
And also because

|(Ty)(t)−(Tx)(t)|=| 1

Γ (ν)

t−ν∑
s=a+1−ν

(t− σ(s))(ν−1)(φ(y(s+ ν − 1), s+ ν − 1)

− φ(x(s+ ν − 1), s+ ν − 1))|

≤L
1

Γ (ν)

t−ν∑
s=a+1−ν

(t− σ(s))(ν−1)|y(s+ ν − 1)− x(s+ ν − 1)|

≤L
Γ (t− a+ ν)

Γ (ν + 1)Γ (t− a)
|y(s+ ν − 1)− x(s+ ν − 1)| < r|y(t)− x(t)|,

we have
|(Ty)(t)− (Tx)(t)| < r|y(t)− x(t)|.

Since 0 < r < 1, this shows that T is a contraction mapping. By Banach fixed
point theorem, the T : S → S has a unique fixed point x(t) which is a also
unique solution of the initial value problem (5.1). ⊓⊔

Similar as the definitions of Ulam stability for fractional differential equation
[25], we introduce the one of delay fractional difference equations. We consider
the fractional difference equation with delay (5.1) and the following inequality

|C∆ν
ay(t)− φ(y(t+ ν − 1), t+ ν − 1)| ≤ ε, t ∈ Na+1−ν . (5.2)

Definition 4. [10] For w : Na → R, Equation (5.1) is Hyers-Ulam-Rassias
stable if for each ε > 0 and each solution y : Na → R of the inequality (5.2),
there exists a solution x ∈ S of Equation (5.1) with

|y(t)− x(t)| ≤ w(t)ε, t ∈ Na+1.

Theorem 8. (Ulam stability theorm) Suppose the Lipschitz condition of φ holds.
Let y : Na → R be a solution of the inequality (5.2) and x ∈ S be a solution of
the Cauchy problem{

C∆ν
ax(t) = φ(x(t+ ν − 1), t+ ν − 1), 0 < ν ≤ 1, t ∈ Na+1−ν ,

x(a) = y(a).
(5.3)

Then, Equation (5.1) is Hyers-Ulam-Rassias stable.

Proof. The solution of the Cauchy problem (5.3) is given by

x(t) = y(a) +∆−ν
a+1−νφ(x(t+ ν − 1), t+ ν − 1), t ∈ Na+1.

By the inequality (5.2), we have

|y(t)− y(a)−∆−ν
a+1−νφ(y(t+ ν − 1), t+ ν − 1)|

≤ ∆−ν
a+1−νε =

Γ (t− a+ ν)

Γ (ν + 1)Γ (t− a)
ε.
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It follows that

|y(t)− x(t)| = |y(t)− y(a)−∆−ν
a+1−νφ(x(t+ ν − 1), t+ ν − 1)|

≤ |y(t)− y(a)−∆−ν
a+1−νφ(y(t+ ν − 1), t+ ν − 1)|

+ |∆−ν
a+1−ν(φ(y(t+ ν − 1), t+ ν − 1)− φ(x(t+ ν − 1), t+ ν − 1))|

≤ Γ (t− a+ ν)

Γ (ν + 1)Γ (t− a)
ε+ L∆−ν

a+1−ν |y(t+ ν − 1)− x(t+ ν − 1)|.

Using Theorem 5, we have

|y(t)− x(t)| ≤ Γ (t− a+ ν)

Γ (ν + 1)Γ (t− a)
eν(L, (t− σ(a))(ν))ε, t ∈ Na+1.

Thus, Equation (5.1) is Hyers-Ulam-Rassias stable. The proof is completed.
⊓⊔

In the proof of the above theorem, we use

w(t) =
Γ (t− a+ ν)

Γ (ν + 1)Γ (t− a)
eν(L, (t− σ(a))(ν)), t ∈ Na+1.

If t = a+ n, n ≥ 1, then,

w(a+ n) =
Γ (n+ ν)

Γ (ν + 1)Γ (n)

n∑
k=0

Lk(n+ kν − k)(kν)

Γ (kν + 1)
.

We take the following numerical example to support the theoretical analysis.

Example 1. Consider the following fractional sine map’s initial value problem{
C∆ν

ax(t) = µ sinx(t+ ν − 1), 0 < ν ≤ 1, t ∈ Na+1−ν ,
x(a) = 0.5.

(5.4)

Let the fractional order ν = 0.8, ε = 0.05 and t = 0, . . . , 10. We have the
contractive mapping constant r = 0.8, the Lipshitz constant µ = 0.1 and
M = 4. If y(t) is an approximate solution of (5.4) with the numerical error ε

C∆ν
ay(t) = µ sin y(t+ ν − 1) + ε, t ∈ Na+1−ν ,

according to Definition 4 and Theorem 8, |y(t)− x(t)| can be estimated as

|y(t)− x(t)| ≤ w(t)ε, t ∈ Na+1.

Figure 1 gives the exact solution x(t) and the approximate solution y(t) for
t ∈ {0, . . . , 10}, respectively. Figure 2 shows that the relationship |y(t)−x(t)| ≤
w(t)ε holds and Equation (5.4) is Hyers-Ulam-Rassias stable.
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Figure 1. Exact solution (the point) and approximate solution (the asterisk).

Figure 2. w(t)ε (the point) and |y(t)− x(t)| (the cross).

6 Conclusions

This paper presents a discrete Gronwall’s inequality and Ulam stability of de-
lay fractional difference equations. Because fractional recurrent neural net-
works [16] can be described by this fractional difference equation, this paper
contributes some basics of Ulam stability of fractional discrete neural networks.

For example, we can obtain one approximate solution y(t) of Equation (5.1)
with a known residual error ε. According to the Ulam stability condition, we
can obtain the error estimation between the exact solution x(t) as:

|y(t)− x(t)| ≤ w(t)ε.

We will consider these possible applications in future work.
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