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1 Introduction and main result

We are concerned with the following double-diffusive magneto convection sys-
tems in (0, T )× R3:

ut −∆u+ (u · ∇)u+∇p = (b · ∇)b+ (θ − s)k,

bt −∆b+ (u · ∇)b = (b · ∇)u,

θt −∆θ + u · ∇θ = u · k,
st −∆s+ u · ∇s = u · k,
∇ · u = ∇ · b = 0

u(0, x) = u0(x), b(0, x) = b0(x), θ(0, x) = θ0(x), s(0, x) = s0(x),

(1.1)

where u = u(t, x), b = b(t, x) and p = p(t, x)are unknown velocity, magnetic
field and dynamic pressure of the fluid, respectively. θ = θ(t, x), s = s(t, x)
and k are scalar quantities affecting the density of the fluid and vertical unit
vector, respectively.

The behavior of double-diffusive convection is initiated by the interplay
between two fluid constituents diffusing at varying speeds, and it holds signif-
icant prominence in diverse areas such as oceanography and numerous other
scientific domains (see [7, 8, 13] for details). The system of equations (1.1) at
b ≡ θ ≡ s ≡ 0 degenerates to the Navier-Stokes equations (NSE for short) and
the system of (1.1) at θ ≡ s ≡ 0 degenerates to the magnetohydrodynamics
(MHD) equations and the system (1.1) at b ≡ 0 degenerates to the double-
diffusive convection system. Intensive studies have been conducted on all of
those systems, specifically focusing on whether the given initial data is smooth
enough for the solution to remain smooth or develop a singularity in finite time.

In a recent work by Wu [16], it has been shown that there exists a unique lo-
cal strong solution to the problem (1.1) when given initial data u0 in H1(R3).
Furthermore, they have proven that the strong solution can be globally ex-
tended when the L2 norm of the initial data is small.

The question of whether a local strong solution can be extended beyond T
up to infinity remains open for the 3D NSE. Numerous studies have attempted
to provide sufficient conditions to ensure this extension of the local strong
solution(see [1, 10, 11] and references therein). One of the pioneering works is
the Beale-Kato-Majda criterion. It was proved in [3] that a unique local strong
solution u to Euler equations can be extended beyond T if the vorticity satisfies

ω ∈ L1(0, T ;L∞). (1.2)

It is well known that BKM criterion (1.2) also holds for the NSE. Recently,
Guo, Kučera and Skalák [6] established the regularity criteria to the 3D NSE
via two vorticity components (ω̃ = (ω1, ω2, 0)). More precisely, they proved
that if

ω̃ ∈ Lp(0, T ; Ḃ−3/q
∞,∞), for q ∈ (3,∞) and 2/p+ 3/q = 2,

or

ω̃∈Lp(0, T ; Ḃ
−3(1/q−1/θ)
θ,∞ ), for q∈(3/2, 3], θ∈[q, 3q/(3−q)) and 2/p+3/q=2,
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then the weak solution is smooth. After that, the first author in [10] proved
the following continuation criteria

ω̃ ∈ L2(0, T ;BMO−1). (1.3)

Quite recently, the first author of the present paper further extended (1.3) to
the largest critical space Ḃ−1

∞,∞ [11].
Let us briefly sum up the regularity criteria concerning the partial derivative

of planar components. We denote by ũ = (u1, u2, 0), b̃ = (b1, b2, 0) and ∇h =
(∂1, ∂2, 0) the planar components vector of u, b and the partial derivative,
respectively. Dong and Zhang [5] proved the BKM type criterion to the 3D
NSE via the partial derivative of planar velocity ∇hũ

∇hũ ∈ L1(0, T ; Ḃ0
∞,∞).

In papers [12, 14, 15], they established some global regularity and stability re-
sults to the 3D double-diffusive convection system. In particular, the author
in [14] proved that if partial derivatives of the planar components of the velocity
field (i.e., ∇hũ ) belong to the Besov space:

∇hũ ∈ L
2

2−r
(
0, T ; Ḃ−r

∞,∞(R3)
)

with 0 ≤ r < 1, (1.4)

then the local solution (u, θ, s) can be extended smoothly beyond t = T . It is
an open question for the case of end-point r = 1 in (1.4) at that time. In the
case of the 3D double-diffusive magneto convection system, the second author
of the present paper [16] proved the BKM type blow-up criterion involving
the partial derivative of planar components. Namely, it proved that the local
strong solution can be extended beyond T if

(∇hũ,∇hb̃) ∈ L2(0, T ;BMO−1). (1.5)

Motivated by the works cited above, it is interesting to extend the criterion
(1.5) to the larger space. In this article, we consider an sufficient condition, in
terms of the partial derivative of planar components (∇hũ,∇hb̃) in the largest
critical space, that guarantee the global regularity of the 3D double-diffusive
magneto convection system (1.1). Specifically, we have the following result.

Theorem 1. Let (u0, b0, θ0, s0) ∈ H2 and (u, b, θ, s) be a unique local strong
solution to (1.1) with initial data (u0, b0, θ0, s0). If (ũ, b̃) satisfies the following
condition ∫ T

0

(
∥∇hũ∥2Ḃ−1

∞,∞
+ ∥∇hb̃∥2Ḃ−1

∞,∞

)
dt < ∞, (1.6)

then (u, b, θ, s) can be smoothly extended beyond time T .

Remark 1. One can see that the continuous embedding

Ḣ1/2 ↪→ L3 ↪→ Ḃ
−1+3/θ
θ,∞ ↪→ BMO−1 ↪→ Ḃ−1

∞,∞, 3 ≤ θ < ∞ (1.7)

hold in R3. In view of (1.7), criterion (1.6) can be viewed as a generalization
of [10,11,14] and [16]. In particular, Theorem 1 solves the remaining problem
in [14].
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2 Preliminaries

We will introduce the homogeneous Besov space, the BMO space and the
BMO−1 space (see [2, 4]). Let S ′ be the space of tempered distributions.
F and F−1 denote the Fourier transform and the inverse Fourier transform,
respectively. Let B be the ball B = {ξ ∈ R3 | |ξ| ≤ 4/3} and C be the annulus
C = {ξ ∈ R3 | 3/4 ≤ |ξ| ≤ 8/3}. Then, there exist radial smooth functions χ
and φ with values in the interval [0, 1], and supports respectively in B and C
such that

χ(ξ) +
∑
j≥0

φ(2−jξ) =1, ξ ∈ R3,

∑
j∈Z

φ(2−jξ) =1, ξ ∈ R3 \ {0}.

The homogeneous dyadic blocks ∆̇j and homogeneous low-frequency cut-off op-

erators Ṡj are defined for all u ∈ S ′ and j ∈ Z by

∆̇ju =φ(2−jD)u = F−1φj ∗ u,
Ṡju =χ(2−jD)u = F−1χj ∗ u.

We denote by S ′
h the space of tempered distributions u such that

limj→−∞∥Ṡju∥∞ = 0.

Let s ∈ R and p, q ∈ [1,∞]. The homogeneous Besov space Ḃs
p,q is defined

as follows:

Ḃs
p,q ={u ∈ S ′

h | ∥u∥Ḃs
p,q

< ∞},

∥u∥Ḃs
p,q

=


(∑

j∈Z 2jsq∥∆̇ju∥qp
) 1

q

, 1 ≤ p ≤ ∞, 1 ≤ q < ∞,

supj∈Z 2
js∥∆̇ju∥p, 1 ≤ p ≤ ∞, q = ∞.

The space BMO consists of locally integrable functions f such that

∥f∥BMO = sup
B

1

|B|

∫
B

|f − fB |dx < ∞ with fB =
1

|B|

∫
B

fdx,

where the the supremum is taken over all balls B in R3. The space BMO−1 is
defined by

BMO−1={f∈S ′ |There exists g=(g1, g2, g3)∈BMO such that f =

3∑
i=1

∂igi}

with the norm

∥f∥BMO−1 = inf
g∈BMO

3∑
i=1

∥gi∥BMO.

We recall some lemmas that will be used in the proof of our result.
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Lemma 1. [10] For any f ∈ BMO−1, g ∈ W 1
q and h ∈ W 1

r , it holds that∫
R3

fgh dx ≤ C∥f∥BMO−1(∥g∥q∥∇h∥r + ∥∇g∥q∥h∥r),

where 1 < q, r < ∞, 1/q + 1/r = 1.

Lemma 2. [11] Let s > 1/2, then, there exists a constant C > 0 such that

∥f∥Ḃ−1
∞,2

≤ C(1 + ∥f∥Ḃ−1
∞,∞

ln1/2(e+ ∥f∥Hs))

for every f ∈ Hs(R3).

We will use the following commutator estimate due to Kato and Ponce.

Lemma 3. [9] Let 1 < p < ∞ and s > 0. Then, there exists an constant C
such that

∥Λs(fg)− fΛsg∥p ≤ C(∥∇f∥p1
∥Λs−1g∥p2

+ ∥Λsf∥p3
∥g∥p4

),

for f ∈ Ẇ 1,p1 ∩ Ẇ s,p3 , g ∈ Lp4 ∩ Ẇ s−1,p2and 1 < p2, p3 < ∞ satisfying
1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4, where Λs = (−∆)s/2.

3 Proof of the main result

In this section we prove Theorem 1.

Proof. The proof is based on the establishment of a priori estimate for
(u, b, θ, s) that allows us to extend the smooth solution beyond time T . If (1.6)
holds, for any small constant ϵ > 0, there exists T0 = T0(ϵ) ∈ (0, T ) such that∫ T

T0

(
∥∇hũ∥2Ḃ−1

∞,∞
+ ∥∇hb̃∥2Ḃ−1

∞,∞

)
dτ ≤ ϵ.

For any t ∈ (T0, T ), we denote

X(t) = max
τ∈[T0,t]

(∥u(τ)∥2H2 + ∥b(τ)∥2H2).

Note that X(t) is nondecreasing. The proof is divided into two steps.

First, we show the basic energy estimate. Taking the L2 inner product to
systems (1.1)1, (1.1)2, (1.1)3 and (1.1)4 with u, b, θ and s, respectively, we
obtain

∥(u, b, θ, s)(t)∥22 + 2

∫ T

0

∥∇(u, b, θ, s)(τ)∥22 dτ ≤ C0. (3.1)

Taking the gradient operator to (1.1)1 and (1.1)2, and multiply the result-
ing equations by ∇u and ∇b, respectively. Integrating over whole space and
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summing up the resulting identities gives that

1

2

d

dt
(∥∇u∥22 + ∥∇b∥22) + (∥∆u∥22 + ∥∆b∥22)

=−
∫
R3

∇(u · ∇u) · ∇udx+

∫
R3

∇(b · ∇b) · ∇udx+

∫
R3

∇(θ−s)k · ∇udx

−
∫
R3

∇(u · ∇b) · ∇bdx +

∫
R3

∇(b · ∇u) · ∇bdx =

5∑
i=1

Ii. (3.2)

As argued in [10,16], it follows from Lemma 1 and Young’s inequality that

I1 + I2 + I4 + I5 ≤C
(
∥∇hũ∥2BMO−1 + ∥∇hb̃∥2BMO−1

) (
∥∇u∥22 + ∥∇b∥22

)
+

1

4

(
∥∆u∥22 + ∥∆b∥22

)
. (3.3)

For I3, we have

I3 =

∫
R3

∇(θ − s)k · ∇udx ≤ 1

2

(
∥∇u∥22 + ∥∇θ∥22 + ∥∇s∥22

)
. (3.4)

Summing up (3.2), (3.3) and (3.4), and applying Gronwall’s lemma yields that

(∥∇u∥22 + ∥∇b∥22) +
∫ t

T0

(∥∆u∥22 + ∥∆b∥22) dτ

≤
(
∥∇u(T0)∥22 + ∥∇b(T0)∥22 +

∫ t

T0

(∥∇θ∥22 + ∥∇s∥22) dτ
)

× exp

(
C

∫ t

T0

(
1 + ∥∇hũ∥2BMO−1 + ∥∇hb̃∥2BMO−1

)
dτ

)
≤ C(T0) exp

(
C

∫ t

T0

(
∥∇hũ∥2BMO−1 + ∥∇hb̃∥2BMO−1

)
dτ

)
,

(3.5)

where we have used the basic energy inequality (3.1). Thanks to Ḃ−1
∞,2 ↪→

BMO−1 and Lemma 2, we obtain from (3.5) that

∥∇u∥22 + ∥∇b∥22 +
∫ t

T0

(∥∆u∥22 + ∥∆b∥22) dτ

≤ C(T0) exp

(
C

∫ t

T0

(
1 + ∥∇hũ∥2Ḃ−1

∞,∞
ln (e+ ∥∇hũ∥H1)

)
dτ

)
× exp

(
C

∫ t

T0

(
1 + ∥∇hb̃∥2Ḃ−1

∞,∞
ln
(
e+ ∥∇hb̃∥H1

))
dτ

)
≤ C(T0) exp

(
C

∫ T

T0

(
∥∇hũ∥2Ḃ−1

∞,∞
+ ∥∇hb̃∥2Ḃ−1

∞,∞

)
× ln

(
e+ ∥∇hũ∥H1 + ∥∇hb̃∥H1

)
dτ

)

Math. Model. Anal., 29(4):684–693, 2024.
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≤ C(T0) exp
(
C

∫ T

T0

(
∥∇hũ∥2Ḃ−1

∞,∞
+ ∥∇hb̃∥2Ḃ−1

∞,∞

)
ln(e+ ∥u∥H2 + ∥b∥H2)dτ

)
≤ C(T0) (e+X(t))

Cϵ
. (3.6)

Next, we show the H2 estimate. Taking Λ2 to (1.1)1 and (1.1)2, and multiply
the resulting equations by Λ2u and Λ2b, respectively. Integrating over whole
space and summing up the resulting identities gives that

1

2

d

dt
(∥Λ2u(t)∥22 + ∥Λ2b(t)∥22) + (∥Λ3u(t)∥22 + ∥Λ3u(t)∥22)

= −
∫
R3

Λ2(u · ∇u) · Λ2udx+

∫
R3

Λ2(b · ∇b) · Λ2udx

+

∫
R3

Λ2(θ − s)k · Λ2udx−
∫
R3

Λ2(u · ∇b) · Λ2bdx

+

∫
R3

Λ2(b · ∇u) · Λ2bdx =

5∑
i=1

Ji.

(3.7)

We now estimate each terms on the right hand side of (3.7) in view of com-
mutator estimate. Taking into account ∇ · u = 0, and applying Lemma 3,
Gagliardo-Nirenberg’s inequality and basic energy inequlity (3.1), we get

J1 =

∫
R3

Λ2(u · ∇u) · Λ2udx =

∫
R3

(
Λ2(u · ∇u)− (u · Λ2∇u)

)
· Λ2udx

≤
∥∥Λ2(u · ∇u)− (u · Λ2∇u)

∥∥
4/3

∥Λ2u∥4 ≤ C∥∇u∥2∥Λ2u∥24

≤C∥∇u∥2∥u∥
2
12
2 ∥Λ3u∥

22
12
2 ≤ C∥∇u∥122 +

1

8
∥Λ3u∥22.

In the same way as in the estimate of J1 we have for J4

J4 =

∫
R3

Λ2(u · ∇b) · Λ2bdx =

∫
R3

(
Λ2(u · ∇b)− (u · Λ2∇b)

)
· Λ2bdx

≤
∥∥Λ2(u · ∇b)− (u · Λ2∇b)

∥∥
4/3

∥Λ2b∥4
≤C

(
∥∇u∥2∥Λ2b∥4 + ∥Λ2u∥4∥∇b∥2

)
∥Λ2b∥4

≤C(∥∇u∥2 + ∥∇b∥2)(∥Λ2u∥24 + ∥Λ2b∥24)

≤C(∥∇u∥2 + ∥∇b∥2)
(
∥u∥

2
12
2 ∥Λ3u∥

22
12
2 + ∥b∥

2
12
2 ∥Λ3b∥

22
12
2

)
≤C(∥∇u∥2 + ∥∇b∥2)12 +

1

8

(
∥Λ3u∥22 + ∥Λ3b∥22

)
.

Similarly, we have for J2 and J5 as follows:

J2 + J5 =

∫
R3

Λ2(b · ∇b) · Λ2udx+

∫
R3

Λ2(b · ∇u) · Λ2bdx

=

∫
R3

(Λ2(b · ∇b)− (b · Λ2∇b)) · Λ2udx+

∫
R3

(Λ2(b · ∇u)− (b · Λ2∇u)) · Λ2bdx
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≤
∥∥Λ2(b · ∇b)− (b · Λ2∇b)

∥∥
4/3

∥Λ2u∥4 +
∥∥Λ2(b · ∇u)− (b · Λ2∇u)

∥∥
4/3

∥Λ2b∥4
≤ C(∥∇u∥2 + ∥∇b∥2)(∥Λ2u∥24 + ∥Λ2b∥24)

≤ C(∥∇u∥2 + ∥∇b∥2)
(
∥u∥

2
12
2 ∥Λ3u∥

22
12
2 + ∥b∥

2
12
2 ∥Λ3b∥

22
12
2

)
≤ C(∥∇u∥2 + ∥∇b∥2)12 +

1

8

(
∥Λ3u∥22 + ∥Λ3b∥22

)
,

where we have used the fact that∫
R3

(b · Λ2∇b) · Λ2udx+

∫
R3

(b · Λ2∇u) · Λ2bdx = 0.

It remains to estimate the third term J3. By virtue of Leibniz rule, we have
that

J3 =

∫
R3

Λ2(θ − s)k · Λ2udx

= −
∫
R3

Λ(θ − s)k · Λ3udx ≤ C(∥∇θ∥22 + ∥∇s∥22) +
1

4
∥Λ3u∥22.

Substituting above estimates into (3.7), we obtain

d

dt
(∥Λ2u(t)∥22 + ∥Λ2b(t)∥22) + (∥Λ3u(t)∥22 + ∥Λ3u(t)∥22)

≤ C
(
∥∇u∥22 + ∥∇b∥22

)6
+ C(∥∇θ∥22 + ∥∇s∥22).

(3.8)

Integrating (3.8) over (T0, t) in view of basic energy inequality (3.1) and (3.6),
we have

∥u(t)∥2
Ḣ2 + ∥b(t)∥2

Ḣ2

≤ ∥u(T0)∥2Ḣ2 + ∥b(T0)∥2Ḣ2 + C0 + C

∫ t

T0

(
∥∇u∥22 + ∥∇b∥22

)6
dτ

≤ ∥u(T0)∥2Ḣ2 + ∥b(T0)∥2Ḣ2 + C0 + C(T0)

∫ t

T0

(e+X(τ))6Cϵdτ.

(3.9)

Taking 0 < ϵ ≤ 1
6C , and combining (3.9) with the basic energy inequality yields

that

X(t) ≤ X(T0) + C0 + C(T0)

∫ t

T0

(e+X(τ))dτ.

Applying Gronwall’s inequality, one concludes that

X(t) ≤ C(T0) + C0 < ∞, for all t ∈ [T0, T ],

which together with (3.6) implies that

u, b ∈ L∞(0, T ;H1(R3)) ∩ L2(0, T ;H2(R3)).

This completes the proof of the Theorem 1. ⊓⊔
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