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Abstract. Indirect disease transmission is modeled via a fractional-order discrete-
time Susceptible-Infected-Contaminant (SIC) model vaccination as a control strategy.
Two control actions are considered, giving rise to two different models: the vaccine
efficacy model and the vaccination impact model. In the first model, the effectiveness
of the vaccine is analyzed by introducing a new parameter, while in the second model,
the impact of the vaccine is studied incorporating a new variable into the model.
Both models are studied giving population thresholds to ensure the eradication of the
disease. In addition, a sensitivity analysis of the Basic Reproduction Number has been
carried out with respect to the effectiveness of the vaccine, the fractional order, the
vaccinated population rate and the exposure rate. This analysis has been undertaken
to study its effect on the dynamics of the models. Finally, the obtained results are
illustrated and discussed with a simulation example related to the evolution of the
disease in a pig farm.
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1 Introduction

Epidemic processes are usually described using continuous and discrete time
mathematical models based on differential or difference equations [12]. Nowa-
days, fractional order derivative approximations have been incorporated into
this kind of model [3,11,15,18,22,25] to achieve better simulations of the real dy-
namical system since they consider the effect of the memory in the process. Sev-
eral continuous models apply the Caputo’s fractional derivative [8,10,17,18,21]
or a modified Riemann-Liouville derivative [25]. Other works use difference
fractional operators on a discretized continuous model [4, 20]. Also, starting
directly from a discrete time model, some works use the Riemann-Liouville, the
Caputo or the Grünwald-Letnikov fractional difference operators [9, 14,15].

An important feature to be considered in epidemiological studies is the im-
plementation of control strategies to improve the eradication of the disease.
Different strategies exist to do this, such as quarantine, isolation, vaccination,
etc. [1, 13, 23]. When vaccination is considered, determining the number of
vaccinated individuals to eradicate the disease is one of the questions to be
answered. Moreover, the effectiveness of the vaccine is also something to be
considered in the model to better describe the process. Several mathematical
models have been developed with vaccination strategies [26]. Some of them
study the effectiveness of the vaccine [16], and other ones consider a new vari-
able in the model representing the vaccinated population [24].

The different control strategies used in the mathematical modelling of epi-
demic processes involve several parameters, such as the effectiveness of the
vaccine, the prevalence of the disease, the vaccination rate, etc. A sensitivity
analysis of the effect on the basic reproduction number of the model produced
by variations of the involved parameters can help to define the direction of the
control strategies. The sensitivity index for the reproduction number with re-
spect to a chosen parameter shows the effect of this parameter in the dynamical
behavior of the system [24, 27, 28] and allows us to determine the importance
of each parameter in the prevalence of the disease. It gives the necessary ratio
of change in the parameter to get the desired change in the basic reproduction
number.

Animal production is considered an essential source of food for humans. The
way animals are raised has changed in last decades, and the stress of intense
confinement can amplify the number and type of pathogens they harbor. This
makes anyone who eats its meat susceptible to carrying a disease. And if an
infectious, transmissible pathogen spreads from animals to people, as Covid-19
did, every person on this planet could be at risk. That is why it is so important
to eradicate zoonotic diseases, such as salmonellosis, brucellosis, or hepatitis
E, on farms. So, preventing them from the beginning helps human well-being
and health.

The elaboration of a mathematical model is necessary to understand the
spread of diseases and to establish reliable measures of prevention and control.
Indirect transmission of diseases like Salmonella encourages us to use epidemic
models that consider the amount of contaminant found in the environment as a
variable together with susceptible and infected individuals [7,12]. This kind of
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disease has been studied in the literature in different situations. For example,
in [19], the authors experimentally studied the case of Salmonella transmission
in organic farms, where the pig production is less than 200 pigs per year. In [5],
a semi-stochastic model has been analyzed for Salmonella infection in the UK.

In this paper, we have analyzed a model of indirect disease transmission
between animals, intending to simulate the conditions present in herds. The
specific objective of this work is to examine how vaccination, as a control
strategy, affects the eradication of a pathogen at the herd level. Starting from
a fractional-order discrete-time SIC epidemic model given in [11], we construct
two models applying two different vaccination control actions. One focuses on
the effectiveness of the vaccine, while the other is worried about its impact.
For that, the first model incorporates the effect parameter and the vaccination
population rate, and the second one has a vaccination rate parameter and
a new variable that accounts for the vaccinated individuals together with an
exposition rate of the vaccinated population. For both models, a sensitivity
analysis is done for the corresponding basic reproduction numbers with respect
to some of the parameters involved, including the fractional order one. Also,
bounds on the population are obtained to assure that the disease is erradicated.
The implemented models are applied to a pig production farm as an example
of the application of this kind of epidemic systems.

This paper is organized as follows. Section 2 presents the problem state-
ment, explaining the two vaccination models analyzed in this paper, the vaccine
effectiveness model and the vaccination impact model. These two vaccination
actions are control strategies incorporated to the mathematical model defined
in [11] to stabilize the system at the disease-free equilibrium point. Section 3
studies the vaccine effectiveness model, making a sensitivity analysis of the
basic reproduction number for the parameters involved in the model (the ef-
fectiveness, the vaccination rate, and the fractional order). In Section 4, the
vaccination impact model is analyzed, and some sensitivity analyses for the
basic reproduction number are also done. In Section 5, a discussion of the
obtained results and some numerical examples to illustrate the behavior of the
models are presented. Some comparisons of the different behavior between
the two models are also shown in this section. Finally, in Section 6, the main
conclusions of the paper are summarized.

2 Problem statement

Consider an epidemic process with indirect transmission under the assumption
of constant population size so that the infectious disease is not transmitted
from individual to individual but through the contaminant. The population
is epidemiologically divided into susceptible S(t) and infectious I(t) classes.
So, we assume that the number of susceptible individuals plus the number of
infected individuals is the total of the population, P = S(t) + I(t), t ≥ 0.
Moreover, we consider that the transmission of this disease occurs by contact
with the environmental contaminant C(t). Infected individuals remain in the
environment, and the contaminant produced by these individuals can infect
others. Therefore, the evolution of individual classes is represented by means
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of a Susceptible-Infected-Contaminant (SIC) model [12]

S(t+ 1) = pS(t)− σC(t)S(t) + µ(t)P,

I(t+ 1) = qI(t) + σC(t)S(t) (2.1)

C(t+ 1) = sC(t) + βI(t), t ≥ 0.

In Table 1, we summarize the biological meaning of the natural parameters
involved in this epidemic model.

Table 1. Parameters of the model.

Parameter Description

σ Exposition or infection rate of susceptible individuals.
µ(t)P Replacement rate of dead individuals.
p/q Survival rate of the susceptible/ infected population, respectively.
s Survival rate of the contaminant.
β The amount of contaminant produced by each infected individual.

Note that the involved parameters must meet certain conditions to ensure
that the model has a biological sense. That is, 0 < p, q, s < 1, q < p,
0 < σ < p < 1 and β > 0.

In [11], a discrete-time mathematical model was presented to study the evo-
lution of disease through indirect transmission using a fractional order discrete
model with k memory steps. To construct the model, we use the following
truncated discrete-time fractional order (DTFO) operator [11,12,15],

∆α
kx(t) =

k∑
j=0

aαj x(t− j), (2.2)

where the fractional order α satisfies 0 < α ≤ 1 and

aαj = (−1)j
(

α
j

)
, j ≥ 0, with

(
α
j

)
=


1, j = 0

α(α− 1)...(α− j + 1)

j!
, j > 0.

The epidemic model (2.1) can be rewritten using the notation

x(t) = (x1(t) x2(t) x3(t))
T = (S(t) I(t) C(t))T ,

with x1(t) representing the susceptible individuals, x2(t) the infected individu-
als and x3(t) the contaminant. From this and using the DTFO operator (2.2),
we define the discrete-time fractional order (DTFO) model with k memory
steps as

x(t+ 1) = Ax(t)−
k∑

j=2

aαj x(t+ 1− j) + f(x(t)) +Bµ(t)P, t ≥ k − 1, (2.3)
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where

A =

 p− 1 + α 0 0
0 q − 1 + α 0
0 β s− 1 + α

 , B = e1,

with e1 the first vector of the canonical basis for the three-dimensional space
R3 and f(x(t)) = σx1(t)x3(t)v1 being v1 = (−1 1 0)T . Note that, in order
to keep a constant population P at any time t, the replacement rate of dead
individuals has to satisfy

µ(t)P = (p− q)x1(t) + P (1− q +Σα
k ), t ≥ k − 1,

with Σα
k =

k∑
j=0

aαj , k ≥ 0, 0 ≤ 1− α < min{q, s}.

In [11], the authors obtained a threshold for the population size P in order
to assure a non-negativity trajectory of the solution of the model. This non-
negativity bound, denoted by C+ is

C+ = ωαKα, with ωα =
q − 1 + α

Θq
and Kα =

ΘqΘs

βσ
, (2.4)

where Θθ = 1 − θ + Σα
k , θ = p, q or s. That is, if P < C+, the solution

x(t) of the model is non-negative. Moreover, for model (2.3), the disease-free
equilibrium point, xf = (P, 0, 0), and the basic reproduction (BR) number,

R0(α, k) =

√
βσP

ΘqΘs
(2.5)

were obtained. Therefore, if R0(α, k) < 1, we can ensure that the solution tends
toward the disease-free equilibrium point. Taking into account the expression
of R0(α, k), if the size of the population meets P < Kα, then the disease is
eradicated.

From now on, we assume P < C+ to assure the non-negativity of the solu-
tion. If ωα < 1 we have P < ωαKα < Kα. Then the disease tends to disappear.
On the other hand, if ωα > 1 and the population satisfies Kα < P < C+ the
system does not reach the disease-free equilibrium point, and the disease re-
mains. Then, it is interesting to apply control actions to achieve the eradication
of the disease. In particular, we consider vaccination as such a control action.

In this paper, we consider how vaccination affects the transmission of the
disease in this infectious process. We have made two assumptions:

� In our first assumption, the vaccine has a rate of effectiveness over the
vaccinated individuals in such a way that when it is effective in an indi-
vidual, it immunizes him completely. The individuals where the vaccine
is effective are no longer susceptible to infection.

� In the second assumption, we have introduced a new variable V (t) that
corresponds to the vaccinated individuals. In this case, the vaccine does
not fully immunize but reduces the risk of infection.

Math. Model. Anal., 29(3):525–545, 2024.
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In both cases, we are interested in finding a lower bound on the vaccinated
population rate to get that the disease tends to disappear. Also, we want to
study how the size of the population affects the disease transmission process
and to carry out a sensitivity analysis on some parameters related to the trans-
mission of the disease. This analysis will be made from the explicit expression
of the basic reproduction number of the models.

From now on, we consider an epidemic process modelled by the system
(2.3) assuming that ωα > 1 and Kα < P < C+, or equivalently, R0(α, k) > 1.
Remind, in this case, the disease remains since the trajectory of the system does
not tend toward the disease-free equilibrium point. To ensure that the disease
tends to disappear, we propose the control action of vaccinating a subset of the
susceptible population using one of the two assumptions exposed above. The
vaccinated population rate is denoted by v, and a reasonable assumption is to
consider this rate is less or equal to the survival rate, 0 ≤ v ≤ p.

3 Vaccine effectiveness model

In this section, we propose to study the effectiveness of the vaccine in a cer-
tain population. In this model, we assume that the vaccine either produces
no effect or produces complete immunity. Since we want to study the pro-
tection provided by the vaccine in the vaccinated population, in addition to
the parameter v, 0 ≤ v ≤ p, we introduce a new parameter ϵ, 0 < ϵ < v.
This parameter, ϵ, measures the percentage of vaccinated individuals who con-
tinue being susceptible to infection. Therefore, the factor (1− ϵ) represents the
vaccine effectiveness.

Based on the DFTO model (2.3), we propose a new discrete-time fractional-
order epidemic model with vaccination introducing the vaccinated population
rate, v, and percentage of those vaccinated who continue to be susceptible to
infection, ϵ. This model is given by

x(t+ 1) = Ax(t)−
k∑

j=2

aαj x(t+ 1− j) + fe(x(t)) +Bµ(t)P, t ≥ k − 1,

where fe(x(t)) = σ(1 − v(1 − ϵ))x1(t)x3(t)v1. This is a model with k steps of
memory since the solution x(t+1) depends on the states x(t), x(t−1), . . . , x(t−
k+1), and in the same way as it is done in [11], from now on we only consider
α ∈ Λe, where

Λe = {α ∈]0, 1] / 0 ≤ 1− α < q, 0 ≤ 1− α < s}.

The condition of constant population P at any time t ≥ 0 implies that the
addition of the two first equations gives µ(t)P = (q−p)x1(t)+PΘq, t ≥ k−1.
So, applying this condition to our model, we have

x(t+ 1) = Ãe x(t)−
k∑

j=2

aαj x(t+ 1− j) + fe(x(t)) +BΘqP, t ≥ k − 1, (3.1)
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where

Ãe =

 q − 1 + α 0 0
0 q − 1 + α 0
0 β s− 1 + α

 .

We can observe that, in this model, the survival rate of the susceptible
population does not appear explicitly in the equations.

Now, to have a model with biological sense, the solution of the system must
be non-negative. Following an analogous reasoning to the one used in [11], we
have that this is achieved if

P <
1

1− v(1− ϵ)
C+,

with C+ given in (2.4).
Note that, this non-negativity bound, denoted by Ce+, is lower than C+

and, by the expression of C+, it is given by

Ce+ =
q − 1 + α

(1− v(1− ϵ))Θq
Kα =

ωα

1− v(1− ϵ)
Kα. (3.2)

Furthermore, we have that

Re0(α, k, v, ϵ) =

√
βσ(1− v(1− ϵ))P

ΘqΘs
(3.3)

is an explicit expression of the basic reproduction (BRe) number associated
with this vaccine effectiveness model.

It is easy to find the relationship between the basic reproduction numbers
corresponding to the model with and without vaccination. From (2.5) and
(3.3),

R2
e0(α, k, v, ϵ) = R2

0(α, k)(1− v(1− ϵ)). (3.4)

In the following result, we study how vaccination can improve the disease
transmission process. In particular, we give a lower bound for the vaccination
rate of our vaccine effectiveness model that makes the disease tends to disap-
pear, and we determine the minimum percentage of vaccinated individuals that
allows the eradication of the disease.

Proposition 1. Consider the model given in (2.3) with R0(α, k) > 1 and the
vaccine effectiveness model given in (3.1). If the parameters ϵ and v satisfy

ϵ <
1

R2
0(α, k)

and v >
1

1− ϵ

(
1− 1

R2
0(α, k)

)
, then Re0(α, k, v, ϵ) < 1.

Proof. If R0(α, k) > 1 then 0 < 1− 1

R2
0(α, k)

< 1. From the biological meaning

of ϵ we have that 0 < 1− ϵ < 1. By (3.4), 0 < 1− v(1− ϵ) < 1 and

R2
e0(α, k, v, ϵ) < R2

0(α, k)

(
1− 1

1− ϵ

(
1− 1

R2
0(α, k)

)
(1− ϵ)

)
= 1.

⊓⊔

Math. Model. Anal., 29(3):525–545, 2024.
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Remark 1. Let us observe that, taking the restrictions on ϵ and v given in
the previous result and taking into account the expression of R0(α, k) given
in (2.5) together with ωα > 1 and the limits on the population size, that is
Kα < P < Ce+, with Ce+ given in (3.2), we can achieve that the disease is
eradicated if

Kα < P < min

{
1

ϵ
,

1

1− v(1− ϵ)

}
Kα,

and the solution of vaccine effectiveness model is non-negative.

3.1 Sensitivity analysis

Sensitivity analysis helps to determine the most influential parameters of the
model and to optimize its structure. In particular, we are interested in using
this analysis to estimate how the corresponding parameter should be modified
to decrease the basic reproduction number by a desired percentage. A decrease
in infected individuals reflects a reduction in the BR number value. If the
BR number is less than one, a reduction in its value corresponds to a faster
approach to equilibrium, that is, a faster disappearance of the disease. And, in
the case of a BR number greater than one, its reduction means that the disease
does not spread with such virulence. That is, if we manage to reduce it to less
than one, the disease will tend to die out.

We use the normalized sensitivity index for a quantity Q with respect to a
parameter h defined as, [27],

Φ(Q/h) =
h

Q

∂Q

∂h
= h

∂

∂h
log(Q). (3.5)

In this part, we compute the sensitivity indices of the basic reproduction
number of the vaccine effectiveness model. We are interested in studying the
effect of vaccination on the transmission of the disease and the behavior of the
model using a fractional approximation. We use the method of direct differ-
entiation to obtain the explicit expressions for the indices associated with the
BRe number, Re0(α, k, v, ϵ), with respect to parameters v, ϵ and α, respectively,
since, generally, the survival rates, p, q, and s, are hard to change.

Proposition 2. Consider the BRe number of the vaccine effectiveness model
(3.1) given (3.3). Then,

(i) Φ(Re0(α, k, v, ϵ)/ϵ) =
ϵv

2(1− (1− ϵ)v)
;

(ii) Φ(Re0(α, k, v, ϵ)/v) = − v(1− ϵ)

2(1− (1− ϵ)v)
;

(iii) Φ(Re0(α, k, v, ϵ)/α) =
α

2k!

(
1

Θq
+

1

Θp

) k∑
j=1

k∏
i = 1
i ̸= j

(i− α).

With these results, we can analyze how small variations of the parameters
v, ϵ, and α affect the BRe number of the vaccine effectiveness model. They
will be used in Section 5 to perform some numerical sensitivity analyses.
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4 Vaccination impact model

In this section, we propose to study the impact of the vaccine on a specific
population. To do this, we apply the control action of vaccinating to our initial
model given (2.3) by adding a new variable, V (t), containing the vaccinated
individuals and denoting by v, 0 ≤ v ≤ p, the vaccinated population rate.
Of course, it is assumed that the infection rate is different for vaccinated and
unvaccinated individuals, being lower for vaccinated individuals. In addition,
we take that the response to the vaccine is the same for all vaccinated indi-
viduals. Let η be the parameter representing the exposition or infection rate
of vaccinated individuals. So, for a vaccinated individual, the exposition rate
satisfies 0 < η < σ. Thus, as the population is assumed to be constant, we have
S(t) + V (t) + I(t) = P , t ≥ 0.

To use a similar notation to the previous section, we consider x(t) =
(xj(t))

T
j=1,2,3,4 where x1(t) denotes the susceptible individuals, x2(t) the vac-

cinated individuals, x3(t) the infected individuals and x4(t) the contaminant.
This new discrete-time fractional order model with k memory steps is given by

x(t+ 1) = Aix(t)−
k∑

j=2

aαj x(t+ 1− j) + fi(x(t)) +Bµ(t)P, t ≥ k − 1,

where

Ai =


p− v − 1 + α 0 0 0

v p− 1 + α 0 0
0 0 q − 1 + α 0
0 0 β s− 1 + α

 , B = e1,

with e1 the first vector of the canonical basis for the four-dimensional space
R4 and fi(x(t)) = σx1(t)x4(t)u1 + ηx2(t)x4(t)u2, with u1 = (−1 0 1 0)T and
u2 = (0 − 1 1 0)T .

The condition of constant population P at any time t ≥ 0 implies that the
addition of the first three equations gives µ(t)P = (q−p)(x1(t)+x2(t))+PΘq.
So, applying this condition to our new model, we have

x(t+ 1) = Ãi x(t)−
k∑

j=2

aαj x(t+ 1− j) + fi(x(t)) +BΘqP, t ≥ k − 1, (4.1)

where

Ãi =


q − v − 1 + α q − p 0 0

v p− 1 + α 0 0
0 0 q − 1 + α 0
0 0 β s− 1 + α

 .

In the same way as the previous section, from now on, we only consider α ∈ Λi,
where

Λi = {α ∈]0, 1] / 0 ≤ 1− α+ v < q, 0 ≤ 1− α < p, 0 ≤ 1− α < s}.

Math. Model. Anal., 29(3):525–545, 2024.
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Under this assumption, the eigenvalues of matrix Ãi have a modulus less than 1.
This assures the extinction of the population when no individual replacement
is considered.

In the following result, we look for a sufficient condition to ensure that the
model trajectory remains non-negative.

Proposition 3. Let Ci+ =
q − v − 1 + α

Θq
Kα and α ∈ Λi. If P < Ci+, then the

solution of system (4.1) is non-negative.

Proof. From the system equation (4.1) and x3(t) ≤ P , for all t ≥ 0, we have
that

x4(t+ 1) ≤ (s− 1 + α)x4(t) + βP −
k∑

j=2

aαj x4(t+ 1− j).

Then, we can construct the system

y(t+ 1) = Hy(t) + βPe1

with y(t) = (x4(t) x4(t − 1) . . . x4(t + 1 − k))T , e1 the first vector of the
canonical basis of R1−k and H a block matrix given by

H =


s− 1 + α −a2 −a3 · · · −ak−1 −ak

1 O O · · · O O
O 1 O · · · O O
...

...
...

...
...

O O O · · · 1 O


and whose solution is y(t) = Hty(0) + βP

t−1∑
i=0

Hje1.

By using an analogous reasoning to the one given in [11], we prove that this

matrix satisfies ρ(H) < 1 and (I −H)−1 =

∞∑
j=0

Hj . Then,

y(t) ≤ βP (I −H)−1e1 =
βP

Θs
(1 . . . 1)T

and consequently x4(t) ≤
βP

Θs
. Since P < Ci+, we obtain x4(t) <

q − v − 1 + α

σ
,

so q − v − 1 + α− σx4(t) > 0. As α ∈ Λi, q < p and σ > η, we have that

0 < q − v − 1 + α− σx4(t) ≤ p− 1 + α− ηx4(t).

On the other hand, (q − p)x2(t) + ΘqP ≥ (q − p + Θq)P ≥ 0. From these
non-negative expressions and using the equations of the system (4.1) it follows
directly that xj(t) ≥ 0, j = 1, 2, 3, 4, t ≥ 0. ⊓⊔

From now on, the expression Ci+ =
q − v − 1 + α

Θq
Kα is called the non-

negativity bound for the vaccination impact model.
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Now, our objective is to obtain the basic reproduction (BRi) number of this
vaccination impact model using the spectral radius of the next-generation ma-
trix, [2]. This matrix will be obtained from a linear approximation of the model
(4.1) around the disease-free equilibrium point x∗ = (x∗

1 x∗
2 x∗

3 x∗
4)

T . In this
equilibrium point, the variable corresponding to the infection and the variable
representing the contaminant must be zero. By definition of the equilibrium
point, it is fulfilled that

x∗ = Ãi x
∗ −

k∑
j=2

aαj x
∗ + fi(x

∗) +BΘqP.

So, through a direct computation, it is obtained that the disease-free equilib-
rium point of the model (4.1) is given by

x∗
1 =

ΘpP

Θp + v
, x∗

2 =
Pv

Θp + v
, x∗

3 = 0, x∗
4 = 0,

for any value α ∈ Λi and k ≥ 1. Next, we are going to consider a linear
approximation of the system (4.1) around this disease-free equilibrium point
x∗ taking x1(t)x4(t) ≈ x∗

1 x4(t) and x2(t)x4(t) ≈ x∗
2 x4(t). Then, we have that

x̂(t+ 1) = E x̂(t)−
k∑

j=2

aαj x̂(t+ 1− j),

where x̂(t) = x(t)− x∗ and the coefficient matrix E is given by

E =


q − v − 1 + α q − p 0 −σx∗

1

v p− 1 + α 0 −ηx∗
2

0 0 q − 1 + α σx∗
1 + ηx∗

2

0 0 β s− 1 + α

 .

We can analyze the evolution of this system considering the variables associated
with the infected individuals, x̂3(t) and the contaminant, x̂4(t). So, we have
the following linear subsystem:

z(t+ 1) = Ē z(t)−
k∑

j=2

aαj z(t+ 1− j),

where z(t) = (x̂3(t), x̂4(t))
T and Ē =

(
q − 1 + α σx∗

1 + ηx∗
2

β s− 1 + α

)
. As this

system is a k−delayed linear system we use the equivalent k−stacked linear
system with the state vector (z(t) z(t − 1) . . . z(t + 1 − k))T and the matrix
E given by

E =


Ē −a2I −a3I · · · −ak−1I −akI
I O O · · · O O
O I O · · · O O
...

...
...

...
...

O O O · · · I O

 .

Math. Model. Anal., 29(3):525–545, 2024.



536 C. Coll, D. Ginestar, A. Herrero and E. Sánchez

Decomposing the matrix Ē into Ē = T + F , being T the diagonal matrix
formed by the diagonal of matrix E and F = Ē−T , we have E as the addition
of two matrices, E = T +F , where T is called transition matrix and F is called
infection matrix, which are given by

T =


T −a2I −a3I · · · −ak−1I −akI
I O O · · · O O
O I O · · · O O
...

...
...

...
...

O O O · · · I O

 and F =


F O · · · O
O O · · · O
O O · · · O
...

...
...

O O · · · O

 .

From these matrices, we construct the next-generation matrix F(I−T )−1 and
we define the basic reproduction (BRi) number of the vaccination impact model
as the spectral radius of this matrix, that is, Ri0(α, k, v, η) = ρ

(
F(I − T )−1

)
,

and its explicit expression is

Ri0(α, k, v, η) =

√
β(σx∗

1 + ηx∗
2)

ΘqΘs
. (4.2)

Taking into account the expression of Ri0(α, k, v, η), we can find a relation-
ship with the basic reproduction number associated with the model without
vaccination, R0(α, k). By (2.5) and (4.2) we obtain

R2
i0(α, k, v, η) =

β(σΘp + ηv)P

ΘqΘs(Θp + v)
=

βσP

ΘpΘs

Θp +
η
σv

Θp + v
= R2

0(α, k)
Θp +

η
σ

Θp + v
.

In the following result we give conditions in order to get Ri0(α, k, v, η) < 1.

Proposition 4. Consider the model given in (2.3) with R0(α, k) > 1 and the
vaccination impact model given in (4.1). If the parameters η and v satisfy that

η <
σ

R2
0(α, k)

and v > Θp
R2

0(α, k)− 1

1− η
σR

2
0(α, k)

, then Ri0(α, k, v, η) < 1.

Proof. From the assumptions we have that
(
1− η

σ
R2

0(α, k)
)
v > Θp(R

2
0(α, k)−

1) > 0 and

Θp + v > R2
0

(
α, k)(Θp +

η

σ
v
)

=⇒ 1 > R2
0(α, k)

Θp +
η
σv

Θp + v
= R2

i0(α, k, v, η).

⊓⊔

Note that we have established a lower limit for the number of vaccinated
individuals,

Cv = Θp
R2

0(α, k)− 1

1− η
σR

2
0(α, k)

,

in such a way, we can get that the infected population tends to disappear by
vaccinating a percentage of the population greater than Cv.
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Remark 2. Note that using the expression of R0(α, k) given in (2.5) the re-

strictions assumed in Proposition 4 are equivalent to P <
σ

η
Kα and P <

Θp + v

Θp +
η
σv

Kα, respectively. Moreover,
Θp + v

Θp +
η
σv

<
σ

η
, since 0 < η < σ. These

conditions, together with the non-negativity bound Ci+ given in Proposition 3,
allow us to assure that if the size of the population satisfies

Kα < P < min

{
Θp + v

Θp +
η
σv

,
q − v − 1 + α

Θq

}
Kα,

then the solution of the vaccination impact model is non-negative, and the
vaccination strategy leads to eradicating the disease.

4.1 Sensitivity analysis

As we have done for the vaccine effectiveness model, in this part, we also analyze
the sensitivity of the BRi number of the vaccination impact model. So, we use
the normalized sensitivity index for a quantity Q with respect to a parameter h,
Φ(Q/h), introduced in (3.5), and we show explicit expressions for the indices.
In particular, we analyze how small parameter variations η, v, and α affect the
BRi number of the vaccination impact model.

Proposition 5. Consider the BRi number of the vaccination impact model
(4.1) given in (4.2). Then,

(i) Φ(Ri0(α, k, v, η)/η) =
vη

2(vη + σΘp)
;

(ii) Φ(Ri0(α, k, v, η)/v) =
vΘp(η − σ)

2(vη + σΘp)(Θp + v)
;

(iii) Φ(Ri0(α, k, v, η)/α) =
α

2k!

(
1

Θq
+

1

Θs
+

1

Θp + v
− σ

vη + σΘp

) k∑
j=1

k∏
i = 1
i ̸= j

(i−α).

In the next section, we perform some numerical sensitivity analyses, seeing
how the values of certain parameters affect the value of the basic reproduction
number for both models.

5 Discussion: numerical examples

In this section, we compare the behavior of the different discrete-time fractional
order models studied above, we begin with the original DTFO model (2.3).

To carry out our analysis, we assume that the models describe a pig farm
where an infectious outbreak is transmitted indirectly by contact or ingestion of
the contaminant. To evaluate the parameters of our models, we have used some
of the data given in [5] and [6] and the references therein, which correspond
to the particular case of a Salmonella infection. Thus, p = 0.9995, q = 0.99,
s = 0.98, σ = 0.24× 10−9 Bacteria−1, β = 2.25× 104 Bacteria.Indiv−1 colony-
forming unit (c.f.u.).

Math. Model. Anal., 29(3):525–545, 2024.
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5.1 Qualitative behavior of the discrete-time fractional-order
models

First, we study the dependence on the fractional derivative order α and the
memory steps k of the non-negativity bound C+ = ωαKα given in (2.4). If
ωα < 1, the size of the population satisfies P < C+ < Kα and we can assure
that the trajectory of the system is non-negative and it tends to the disease-free
equilibrium point.

Otherwise, if ωα > 1 and Kα < P < C+, the disease remains, and we will
propose some vaccination actions. In Table 2, for different values of α and k, we
show the lower and upper bounds of P such that the trajectory is non-negative,
but it does not tend to the disease-free equilibrium point. We have considered
values of α and k providing ωα > 1.

Table 2. Variation of Kα and C+ in terms of α and k.

k
α

0.97 0.98 0.99

2 167.075 6302.22 112.97 5424.81 69.8153 4546.11
4 92.647 4963.43 70.8237 4524.03 52.3824 4091.7
6 72.0675 4506.85 58.6683 4219.15 47.0478 3939.06
8 62.579 4275.67 52.9439 4065.43 44.4681 3862.42

10 57.1399 4135.73 49.6203 3972.65 42.9475 3816.3

Kα C+ Kα C+ Kα C+

Now, we focus our attention on the worst case. That is, we consider the
smallest bound Kα for P , which ensures the disappearance of the disease. We
can observe that this occurs when α = 0.99 and k = 10. From now on, we will
consider these values to study both vaccination models.

If the vaccine effectiveness model is considered, according to Remark 1,
the upper bound to assure that the vaccine allows eradicating the disease is a
function of the parameters v and ϵ, which is shown in Table 3.

Table 3. Upper bound on P , in terms of v and ϵ, to assure that the solution of the vaccine
effectiveness model (α = 0.99 and k = 10) is non-negative and the vaccination strategy leads
to the eradication of the disease.

v
ϵ

0.2 0.4 0.6

0.564 78 64 55
0.8 119 82 63

0.96 185 101 69

If the vaccination impact model is considered, according to Remark 2, the
upper bound to assure that the vaccine allows leading the solution of the system
toward the disease-free equilibrium point is a function of the parameters v and
η, see Table 4.
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Table 4. Upper bound on P , in terms of v and η, to assure that the solution of the
vaccination impact model (α = 0.99 and k = 10) is non-negative and the vaccination strategy
leads to the eradication of the disease.

v
η

6× 10−11 7× 10−11 8× 10−11 9× 10−11

0.01 122 111 101 93
0.013 130 117 106 97

0.017 137 122 110 100

Looking at both models, we focus on a population size equal to P = 100. If
we take a DTFO model for α = 0.99 truncated in 10 steps, the disease remains
without vaccination since R0(0.99, 10) = 1.52.

On the one hand, in the vaccine effectiveness model, we can observe that
taking ϵ = 0.4 we have assured that the vaccination strategy leads to the
disappearance of the disease since P = 100 < 101. It is necessary to vaccinate
the 96% of the population in order to get the disease disappears, see Table 3.
Note that, in this case, the BRe number (3.3) is Re0(0.99, 10, 0.96, 0.4) = 0.99.

On the other hand, in the vaccination impact model, taking η = 9× 10−11,
we have that the population size P = 100 is equal to the bound given in
Table 4. In this case, we only need to vaccinate the 1.7% of the population.
Moreover, we have that the BRi number (4.2) also reduces to the same value,
Ri0(0.99, 10, 0.017, 9× 10−11) = 0.99.

Once the values of the parameters indicated in the previous paragraphs
have been fixed, we consider a variation in the vaccinated population rate. For
instance, we observe a different behavior when reducing v by about 41% in
both models. In the vaccine effectiveness model, when we reduce from v = 0.96
to v = 0.564, the new BRe number is Re0(0.99, 10, 0.564, 0.4) = 1.241; while,
in the vaccination impact model, when we pass from v = 0.017 to v = 0.01 we
have that the new BRi number is Ri0(0.99, 10, 0.01, 9 × 10−11) = 1.032. The
same happens with the trajectory of the infected population. Figure 1 shows
the evolution of the infected population in both models for both vaccinated
population rate. We observe more significant growth of the infected population
in the vaccine effectiveness model than in the vaccination impact model.

v= 0.564

v= 0.96

0 50 100 150 200 250 Time (d)0

5

10

15

Population

(a) Vaccine effectiveness model with ϵ = 0.4.

Cases: v = 0.564 and v = 0.96.

v= 0.01

v= 0.017

0 50 100 150 200 250 Time (d)0

5

10

15

Population

(b) Vaccination impact model with η =

9× 10−11. Cases: v = 0.01 and v = 0.017.

Figure 1. Evolution of infected population when the vaccinated population rate is
reduced to the same percentage in both fractional-order models with 10 memory steps and

α = 0.99.
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5.2 Sensitivity analysis

Next, we make a sensitivity analysis for the two discrete-time fractional order
models developed previously. Depending on the model considered, the most
effective method to reduce the BR number will be different. For the vaccine
effectiveness model, a reduction in BRe number is achieved with an increase in
vaccine effectiveness. In contrast, for the vaccination impact model, the BRi

number reduces with a decrease in the exposure rate of vaccinated individuals.
In both models, the reduction of the BR number is also achieved by increasing
the vaccination rate. In addition, we have also studied the influence of the
fractional order, α, of the model on the reduction of the BR number.

Sensitivity analysis: Vaccine effectiveness model

We aim to reduce the BRe number by about 10% using the new value for
every parameter from its corresponding sensitivity index whose expression is
given in Proposition 2. In Tables 5–7, the sensitivity index with respect to v, ϵ
and α, respectively, and the variation achieved by the BRe number are shown.

Table 5. Variation of v and Re0 from Φ(Re0/v) in order to get a decrease of the BRe

number by 10% in the vaccine effectiveness model with α = 0.99, k = 10 and ϵ = 0.4.

v Re0(0.99, 10, v, 0.4) Φ(Re0/v) v̂ Re0(0.99, 10, v̂, 0.4)

0.564 1.241 -0.255 0.784 1.11

0.604 1.218 -0.284 0.84 1.074
0.644 1.195 -0.314 0.89 1.037
0.684 1.171 -0.348 0.95 0.999

Table 6. Variation of ϵ and Re0 from Φ(Re0/ϵ) in order to get a decrease of the BRe

number by 10% in the vaccine effectiveness model with α = 0.99, k = 10 and v = 0.564.

ϵ Re0(0.99, 10, 0.564, ϵ) Φ(Re0/ϵ) ϵ̂ R0(0.99, 10, 0.564, ϵ̂)

0.25 1.159 0.122 0.045 1.036
0.3 1.187 0.139 0.085 1.061
0.35 1.214 0.155 0.125 1.086

0.4 1.241 0.17 0.165 1.11

Table 7. Variation of α and Re0 from Φ(Re0/α) in order to get a decrease of the BRe

number by 10% in the vaccine effectiveness model with k = 10, v = 0.564 and ϵ = 0.4.

α Re0(α, 10, 0.564, 0.4) Φ(Re0/α) α̂ Re0(α̂, 10, 0.564, 0.4)

0.99 1.241 7.236 0.976 1.124

0.996 1.297 7.391 0.982 1.173
1. 1.336 7.5 0.986 1.207
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We consider the vaccine effectiveness model with 10 memory steps and
α = 0.99, v = 0.564 and ϵ = 0.4. With these values of the parameters, the
disease remains since the corresponding BRe is greater than 1. In Figure 2, the
evolution of the infected population is shown when one of these parameters is
changed according to the new value proposed in Tables 5-6-7.

v= 0.564, ϵ = 0.4, α= 0.99

v= 0.784, ϵ = 0.4, α= 0.99

v= 0.564, ϵ = 0.165, α= 0.99

v= 0.564, ϵ = 0.4, α= 0.976

v= 0.564, ϵ = 0.4, α= 1

0 50 100 150 200 250 Time
0

5

10

15

Infected Population

Figure 2. Vaccine effectiveness model : Evolution of infected population in the different
cases provided from the sensitivity analysis.

It is observed that the new values of the parameters provide similar de-
creasing evolution of the infected population. The initial BRe number,

Re0(0.99, 10, 0.564, 0.4) = 1.241,

transforms into new BRe numbers, given by

Re0(0.99, 10, 0.784, 0.4) =1.11,

Re0(0.99, 10, 0.564, 0.165) =1.11,

Re0(0.976, 10, 0.564, 0.4) =1.124,

depending on the parameter, we vary. In the three cases, the disease still
remains, but we have reduced the BRe number.

Sensitivity analysis: Vaccination impact model

Analogously to the above case, we propose to reduce the BRi number by
about 10% varying one of the parameters. The variation of the BRi number
when the parameters v, η, and α are changed according to its corresponding
sensitivity index, given in Proposition 5, is shown in Tables 8–10.

Table 8. Variation of v and Ri0 from Φ(Ri0/v) in order to get a decrease of the BRi

number by 10% in the vaccination impact model with α = 0.99, k = 10 and η = 9× 10−11.

v Ri0(0.99, 10, v, 9× 10−11) Φ(Ri0/v) v̂ Ri0(0.99, 10, v̂, 9× 10−11)

0.01 1.032 -0.078 0.023 0.982

0.013 1.013 -0.067 0.029 0.972
0.015 1.004 -0.061 0.034 0.967
0.017 0.997 -0.055 0.038 0.963

Math. Model. Anal., 29(3):525–545, 2024.
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Table 9. Variation of η and Ri0 from Φ(Ri0/η) in order to get a decrease of the BRi

number by 10% in the vaccination impact model with α = 0.99, k = 10 and v = 0.01.

η Ri0(0.99, 10, 0.01, η) Φ(Ri0/η) η̂ Ri0(0.99, 10, 0.01, η̂)

7× 10−11 0.947 0.328 5.03× 10−11 0.855
8× 10−11 0.99 0.342 5.74× 10−11 0.89

9× 10−11 1.032 0.355 6.466× 10−11 0.923

Table 10. Variation of α and Ri0 from Φ(Ri0/α) in order to get a decrease of the BRi

number by 10% in the vaccination impact model with k = 10, v = 0.01 and η = 9× 10−11.

α Ri0(α, 10, 0.01, 9× 10−11) Φ(Ri0/α) α̂ Ri0(α̂, 10, 0.01, 9× 10−11)

0.99 1.032 1.859 0.936 0.854

0.996 1.041 1.119 0.907 0.743
1. 1.045 0.497 0.798 0.437

Now, we consider the vaccination impact model with k = 10 steps of memory
and parameters: α = 0.99, v = 0.01 and η = 9×10−11 and we fix our attention
on the new values of these parameters shown in Tables 8–10. In Figure 3, the
evolution of the infected population in each one of these cases is plotted.

v= 0.01, h= 9×10-11, α= 1

v= 0.01, h= 9×10-11, α= 0.99

v= 0.023, h= 9×10-11, α= 0.99

v= 0.01, h= 6.466×10-11, α= 0.99

v= 0.01, h= 9×10-11, α= 0.937

0 50 100 150 200 250 Time
0

5

10

15

Infected Population

Figure 3. Vaccination impact model : Evolution of infected population in the different
cases provided from the sensitivity analysis.

It is observed that the new values of the parameters provide different de-
creasing evolution of the infected population. In fact, from the initial BRi

number Ri0(0.99, 10, 0.01, 9 × 10−11) = 1.032, the new BRi numbers obtained
are

Ri0(0.99, 10, 0.023, 9× 10−11) =0.982,

Ri0(0.99, 10, 0.1, 6.466× 10−11) =0.923,

Ri0(0.936, 10, 0.01, 9× 10−11) =0.854.

With these initial values of the parameters, the disease tends to be eradicated
since, in the three cases, we get the BRi number less than 1. Here, we also
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observe that the reduction of the BRi number is more significant when the
parameter α is modified.

6 Conclusions

Although mathematical models provide critical information about infectious
diseases, these models could be more robust in analyzing the advantages of
using certain control measures and the effects that small variations in model
parameters can have on the extinction of an infection.

In this work, we focus on vaccination as a control action on an epidemic
model, and we have considered the study of the sensitivity of the value of the
basic reproduction number with respect to certain parameters. For that, we
have applied a vaccination control strategy to a fractional-order discrete-time
SIC epidemic model and consider how vaccination affects disease transmission
in two scenarios: for a vaccine effectiveness model and for a vaccination impact
model. We have done a sensitivity analysis for the BR number with respect to
some parameters. The structure followed in both cases is similar. First, upper
bounds have been determined to ensure the biological meaning, that is, the
non-negativity of the solution. Lower bounds have also been sought to deter-
mine the vaccinated population rate that ensures the eradication of the disease,
obtaining information on the size of the population that ensures this behavior.
This fact is important when taking into account the economic factor in the use
of certain control. In addition, it has been studied how the variation of certain
parameters affects the value of the basic reproduction number, obtaining an
explicit expression for the sensitivity indices. This analysis allows us to use the
data to mark the increase or decrease in the considered parameters to reduce
the value of the basic reproduction number.

Finally, we have illustrated the theoretical results using our models applied
to a pig farm. In the vaccine effectiveness model analyzed in this example, we
observe that the dependence of the BRe number with respect to each one of
the parameters (v, ϵ, and α) is very similar. It has been reduced approximately
to the 10% target in all three cases.

In the vaccination impact model, the dependence of the BRi number with
respect to each parameter is not the same. Specifically, the sensitivity index
associated with α provides a more significant reduction of the BRi number than
the index associated with v and η.

As future work, more general models can be considered with discrete frac-
tional order operators, which include recovered individuals or even that the
disease transmission is directly from infected individuals and indirectly by the
contaminant. Also, different discrete fractional order operators, as Caputo’s or
Riemann-Liouville ones, can be considered for a SIC model.
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study of varicella-zoster virus model in sense of Mittag-Leffler kernel. Int. J.
Biomath., 17(3):2350027, 2024. https://doi.org/10.1142/S1793524523500274.

Math. Model. Anal., 29(3):525–545, 2024.

https://doi.org/10.1142/S1793524523500274


544 C. Coll, D. Ginestar, A. Herrero and E. Sánchez

[2] L.J.S. Allen and P. van den Driessche. The basic reproduction number in some
discrete-time epidemic models. J. Difference Equ. Appl., 14(10–11):1127–1147,
2008. https://doi.org/10.1080/10236190802332308.

[3] J. Alzabut, A.G.M. Selvam, V. Dhakshinamoorthy, H. Mohammadi and
S. Rezapour. On chaos of discrete time fraccional order host-immune-
tumor cell interaction model. J. Appl. Math. Comput., 68:4795–4820, 2022.
https://doi.org/10.1007/s12190-022-01715-0.

[4] I.M. Batiha, N. Djenina, A. Ouannas and T.E. Oussaeif. Fractional-order SEIR
Covid-19 model: Discretization and stability analysis. In D. Zeidan, J.C. Cortés,
A. Burqan, A. Qazza, J. Merker and G. Gharib(Eds.), Mathematics and Com-
putation. IACMC 2022, volume 418 of Springer Proceedings in Mathematics and
Statistics, Singapore, 2022. Springer. https://doi.org/10.1007/978-981-99-0447-
1 20.

[5] A.D.C. Berriman, D. Clancy, H.E. Clough and R.M. Christleyz. Semi-stochastic
models for salmonella infection within finishing pig units in the UK. Math.
Biosci., 245(2):148–156, 2013. https://doi.org/10.1016/j.mbs.2013.06.004.

[6] A.D.C. Berrmann. Mathematical modelling of the dynamics and control of
Salmonella on UK pig farms. PH.D. thesis, University of Liverpool, UK, 2012.

[7] F. Brauer. A new epidemic model with indirect transmission. J. Biol. Dyn.,
11:285–293, 2017. https://doi.org/10.1080/17513758.2016.1207813.

[8] Y.M. Chu, M.F. Khan, S. Ullah, S.A.A. Shah, M. Farooq and M. Mamat.
Mathematical assessment of a fractional-order vector-host disease model with
the Caputo-Fabrizio derivative. Math. Methods Appl. Sci., 46(1):232–247, 2023.
https://doi.org/10.1002/mma.8507.

[9] Y.M. Chu, S. Rashid, A.O. Akdemir, A. Khalid, D. Baleanu, B.R. Al-Sinan and
O.A.I. Elzibar. Predictive dynamical modeling and stability of the equilibria in
a discrete fractional difference COVID-19 epidemic model. Results in Physics,
49(106467), 2023. https://doi.org/10.1016/j.rinp.2023.106467.

[10] Y.M. Chu, R. Zarin, A. Khan and S. Murtaza. A vigorous study
of fractional order mathematical model for SARS-CoV-2 epidemic with
Mittag-Leffler kernel. Alexandria Engineering J., 71:565–579, 2023.
https://doi.org/10.1016/j.aej.2023.03.037.

[11] C. Coll, D. Ginestar, A. Herrero and E. Sánchez. The discrete fractional order
difference applied to an epidemic model with indirect transmission. Appl. Math.
Model., 103:636–648, 2022. https://doi.org/10.1016/j.apm.2021.11.002.

[12] C. Coll and E. Sánchez. Epidemic spreading by indirect transmission
in a compartmental farm. Appl. Math. Comput., 386(125473), 2020.
https://doi.org/10.1016/j.amc.2020.125473.

[13] A. Dababneh, N. Djenina, A. Ouannas, G. Grassi, I.M. Batiha and I.H. Je-
bril. A new incommensurate fractional-order discrete COVID-19 model with
vaccinated individuals compartment. Fractal and Fractional, 6(8):456, 2022.
https://doi.org/10.3390/fractalfract6080456.

[14] N. Djenina, A. Ouannas, I.M. Batiha, G. Grassi, T.E. Oussaeif and S. Momani.
A novel fractional-order discrete SIR model for predicting COVID-19 behavior.
Mathematics, 10(13):2224, 2022. https://doi.org/10.3390/math10132224.

[15] A. Dzielinski and D. Sierociuk. Stability of discrete fractional order
state-space systems. IFAC Proceedings Volumes, 39(11):505–648, 2006.
https://doi.org/10.3182/20060719-3-PT-4902.00084.

https://doi.org/10.1080/10236190802332308
https://doi.org/10.1007/s12190-022-01715-0
https://doi.org/10.1007/978-981-99-0447-1_20
https://doi.org/10.1007/978-981-99-0447-1_20
https://doi.org/10.1016/j.mbs.2013.06.004
https://doi.org/10.1080/17513758.2016.1207813
https://doi.org/10.1002/mma.8507
https://doi.org/10.1016/j.rinp.2023.106467
https://doi.org/10.1016/j.aej.2023.03.037
https://doi.org/10.1016/j.apm.2021.11.002
https://doi.org/10.1016/j.amc.2020.125473
https://doi.org/10.3390/fractalfract6080456
https://doi.org/10.3390/math10132224
https://doi.org/10.3182/20060719-3-PT-4902.00084


Vaccination Strategy 545

[16] Z.Y. He, A. Abbes, H. Jahanshahi, N.D. Alotaibi and Y. Wang. Fractional-
order discrete-time SIR epidemic model with vaccination: Chaos and complexity.
Mathematics, 10(2):165, 2022. https://doi.org/10.3390/math10020165.

[17] L.V.C. Hoan, M.A. Akinlar, M. Inc, J.F. Gómez-Aguilar, Y.M. Chu and B. Al-
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