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Abstract. In this paper, we mainly study the numerical differenti-

ation problem of computing the fractional order derivatives from

noise data of a single variable function. Firstly, the numerical dif-

ferentiation problem is reformulated into an inverse source prob-

lem of first order hyperbolic equation, and the corresponding solv-

ability and the conditional stability are provided under suitable

conditions. Then, four regularization methods are proposed to re-

construct the unknown source of hyperbolic equation which is the

numerical derivative, and they are implemented by utilizing the

finite dimensional expansion of source function and the superpo-

sition principle of hyperbolic equation. Finally, Numerical experi-

ments are presented to show effectiveness of the proposed methods.

It can be conclude that the proposed methods are very effective

for small noise levels, and they are simpler and easier to be im-

plemented than the previous PDEs-based numerical differentiation

method based on direct and inverse problems of parabolic equa-

tions.
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1 Introduction

The problem of numerically computing derivatives of a function, called numer-
ical differentiation for short, is one of classical ill-posed problems, where the
function to be differentiated is generally contaminated by random noise. In
practical applications, the main ill-posedness of numerical differentiation is in-
stability, which means that small errors in the contaminated function will lead
to dramatically changes in numerical derivatives. Hence, many methods have
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been developed to overcome this special instability of numerical differentiation,
such as finite difference methods [26, 27], mollification methods [9, 24], differ-
entiation by integration [31, 33], Tikhonov regularization [6, 30] and variation
method [15], spline methods [11, 20, 36] and radial basis functions approxi-
mation [35], polynomial approximation with regularization [39], regularization
methods with total variation and L1 penalty term [29] and references therein.

Nowadays, fractional calculus plays an increasingly important role in science
and engineering, where the fractional order derivatives are applied to model
many phenomena such as control [23], viscoelastic materials [10], heterogeneous
porous media [2,12], physics [7], epidemiology [3], biology [8,13], mass spectrum
signal process [18], computer vision [1,37]. Especially, the fractional derivatives
are used to detect R wave in electrocardiogram [8]. Although there are already
some numerical methods to approximate the fractional order derivatives, such
as methods based on Lagrange polynomials [4], backward difference schemes [4],
spline-based methods [22, 23] and Hermite interpolation method [21], most of
the existing methods are sensitive to the noise. Thus, data smoothing is usually
performed before calculating the fractional order derivatives of the data, which
will increase the difficulty of the fractional derivatives’ applications.

Computing fractional order derivatives from noisy data is significant due to
the nature of real-world data, which is inherently noisy. Therefore, to develop
a direct and stable method to compute the fractional derivatives from noise
data is very important for understanding and analyzing real-world systems,
enhancing the robustness and reliability of data-driven models. However, there
are few studies on numerical fractional derivatives of noise data [17,28]. In [17],
the authors proposed a regularization method based on radial basis functions
to approximate fractional derivatives numerically from one-dimensional noise
data; while in [28] the authors constructed a dynamical algorithm based on the
methods of control theory to approximately compute the Caputo-type frac-
tional derivatives. In this work, we propose four regularization methods based
on inverse source problems of first order hyperbolic equations for computing
the fractional derivatives, which is motivated by the PDEs-based numerical
differentiation methods proposed firstly in our previous work [25, 32]. Com-
pared with the results in [25,32], this work has at least the following novelties:
firstly, the idea of PDEs-based numerical differentiation is extended to the
case of computing fractional derivatives by using direct and inverse problems
of hyperbolic equations; secondly, the solvability and conditional stability of
numerically fractional derivatives are proved under some suitable assumptions;
finally, the methods proposed in this paper are simpler and easier to be imple-
mented than the method based on the direct and inverse problems of parabolic
equations. Now, we state the problem considered in this paper as follows.

Given the approximation φδ(x) of a smooth function φ(x) on Ω = [a, b]
such that ∥∥∥φδ(x)− φ(x)

∥∥∥
∞

:= max
x∈Ω

∣∣∣φδ(x)− φ(x)
∣∣∣ ≤ δ,

the considered numerical differentiation problem is to compute numerically the
Riemann-Liouville and Caputo fractional derivatives of order β ∈ (0, 1) and
the first order derivative (β = 1) of φ(x) from φδ(x). Here, δ is the noise level.
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This paper is organized as follows. The problem is formulated in Section 1.
The definitions and properties of fractional integrals and derivatives are intro-
duced in Section 2. The regularization methods based on direct and inverse
problems of hyperbolic equations are proposed together with the solvability and
conditional stability in Section 3. numerical examples are given in Section 4
to illustrate the stability and accuracy of the proposed methods. Finally, some
conclusions are drawn in Section 5.

2 Fractional integrals and fractional derivatives

In this section, we give some necessary definitions and properties of fractional
integrals and derivatives for convenience of reading. At the same time, a basi-
cally numerical method for computing the fractional integrals is introduced.

2.1 Definitions and properties

Definition 1. (Riemann-Liouville fractional integrals). Let Ω = [a, b] (−∞ <
a < b < +∞) be a finite interval on R, and φ(x) be an arbitrary function

in L1(Ω). The Riemann-Liouville fractional integrals Iβa+φ and Iβb−φ of order
β ∈ (0, 1) are defined by the formulas

Iβa+φ(x) =
1

Γ (β)

∫ x

a

φ(t)

(x− t)1−β
dt, x ∈ Ω

and

Iβb−φ(x) =
1

Γ (β)

∫ b

x

φ(t)

(t− x)1−β
dt, x ∈ Ω

respectively. Here Γ (·) is the Gamma function defined by

Γ (β) =

∫ ∞

0

tβ−1e−tdt.

The integrals Iβa+φ and Iβb−φ are called the left-sided and the right-sided frac-
tional integrals of order β, respectively.

Definition 2. (Riemann-Liouville fractional derivatives). Let Ω = [a, b] and

φ(x) ∈ L1(Ω). The Riemann-Liouville fractional derivatives R
aD

β
xφ and R

xD
β
b φ

of order β ∈ (0, 1) are defined by

R
aD

β
xφ(x) =

1

Γ (1− β)

d

dx

∫ x

a

φ(t)

(x− t)β
dt, x ∈ Ω

and

R
xD

β
b φ(x) =

−1

Γ (1− β)

d

dx

∫ b

x

φ(t)

(t− x)β
dt, x ∈ Ω.

R
aD

β
xφ and R

xD
β
b φ are called the left-sided and the right-sided Riemann-Liouville

fractional derivatives of order β, respectively.
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Definition 3. (Caputo fractional derivatives). Let Ω = [a, b] and φ(x) ∈
C1(Ω). The Caputo fractional derivatives C

aD
β
xφ and C

xD
β
b φ of order β ∈ (0, 1)

are defined by

C
aD

β
xφ(x) =

1

Γ (1− β)

∫ x

a

φ′(t)

(x− t)β
dt

and

C
xD

β
b φ(x) =

−1

Γ (1− β)

∫ b

x

φ′(t)

(t− x)β
dt.

C
aD

β
xφ and C

xD
β
b φ are called the left-sided and the right-sided Caputo fractional

derivatives of order β, respectively.

Proposition 1. Let Ω = [a, b] and β ∈ (0, 1). For a function φ(x) ∈ L1(Ω),
the Riemann-Liouville fractional derivatives hold

d

dx
I1−β
a+ φ(x) = R

aD
β
xφ(x),

d

dx
I1−β
b− φ(x) = −R

xD
β
b φ(x). (2.1)

For a function φ(x) ∈ C1(Ω), the Caputo fractional derivatives hold

d

dx
I1−β
a+ φ(x) = C

aD
β
xφ(x) +

φ(a)

Γ (1− β)
(x− a)−β (2.2)

and
d

dx
I1−β
b− φ(x) = C

xD
β
b φ(x)−

φ(b)

Γ (1− β)
(b− x)−β . (2.3)

Proof. The Equalities (2.1) are obviously true from the definitions of Riemann-
Liouville fractional integrals and derivatives. The proof of Equation (2.3) is
similar to that of (2.2). So, we only give the proof for Equation (2.2) in the
following.

For 0 < β < 1, it follows that

d

dx
I1−β
a+ φ(x) =

d

dx

[
1

Γ (1− β)

∫ x

a

φ(t)

(x− t)1−(1−β)
dt

]

=
−1

Γ (1− β)

d

dx

∫ x

a

φ(t)d
(x− t)1−β

1− β

=
−1

(1−β)Γ (1−β)

d

dx

[
φ(t)(x−t)1−β

∣∣∣x
a
−
∫ x

a

(x−t)1−βφ′(t)dt

]
=

φ(a)

Γ (1− β)
(x− a)−β +

1

Γ (1− β)

∫ x

a

φ′(t)

(x− a)β
dt

= C
aD

β
xφ(x) +

φ(a)

Γ (1− β)
(x− a)−β .

The proof is completed. ⊓⊔

Math. Model. Anal., 30(1):74–96, 2025.
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2.2 Numerical method for fractional integrals

Let φ(x) ∈ L1(Ω) and it has enough smoothness in Ω = [a, b] for numeri-
cal calculation. Without specific clarification, the method introduced here for
numerically computing the fractional integrals is in the uniformed mesh with
xk = a + kh, k = 0, 1, . . . , N and the step size h = b−a

N , N ∈ Z+. Then, the
left-sided and the right-sided Riemann-Liouville fractional derivatives of order
β at xk can be expressed respectively as

Iβa+φ(xk) =
1

Γ (β)

∫ xk

a

φ(t)

(xk − t)1−β
dt

=
1

Γ (β)

k−1∑
j=0

∫ xj+1

xj

φ(t)

(xk − t)1−β
dt, 1 ≤ k ≤ N (2.4)

and

Iβb−φ(xk) =
1

Γ (β)

∫ b

xk

φ(t)

(t− xk)1−β
dt

=
1

Γ (β)

N−1∑
j=k

∫ xj+1

xj

φ(t)

(t− xk)1−β
dt, 0 ≤ k ≤ N − 1.

Next, we give a numerical method to approximate integrals (2.4). To this
end, we approximate φ(x) with a linear interpolation function on [xj , xj+1],
that is,

φ(x) ≈ φ(xj)
x− xj+1

xj − xj+1
+ φ(xj+1)

x− xj

xj+1 − xj
, x ∈ [xj , xj+1].

Substitute the above interpolation into (2.4), and through integration by parts
we can get

Iβa+φ (xk) ≈
1

Γ (β + 2)

k∑
j=0

ckjφ(xj), (2.5)

where

ck0 =
(β + 1)(xk − x0)

β(x0 − x1)− (xk − x1)
β+1 + (xk − x0)

β+1

x0 − x1
,

ckj =
(xk−xj−1)

β+1−(xk−xj)
β+1

xj − xj−1
+
(xk−xj)

β+1−(xk−xj+1)
β+1

xj − xj+1
,1≤j≤k−1,

ckk =(xk − xk−1)
β .

Similarly, we have

Iβb−φ (xk) ≈
1

Γ (β + 2)

N∑
j=k

dkjφ(xj),
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where

dkN =
(β + 1)(xN − xk)

β(xN − xN−1)− (xN − xk)
β+1 + (xN−1 − xk)

β+1

xN − xN−1
,

dkj =
(xj−1−xk)

β+1−(xj − xk)
β+1

xj − xj−1
+
(xj−xk)

β+1−(xj+1−xk)
β+1

xj − xj+1
,

k + 1 ≤ j ≤ N − 1,

dkk =(xk+1 − xk)
β .

3 Regularization methods for fractional derivatives

3.1 Reformulation of numerical differentiation

From properties (2.1)–(2.3), we only need to consider the differentiation prob-
lem for numerically computing the Riemann-Liouville fractional derivatives,
and transform it into an inverse source problem of a first order hyperbolic
equation by the following three steps.

Step 1. Computing the fractional integral I1−β
a+ φ(x) of φ(x), and denoting

it by Φ(x). That is,

Φ(x) =

{
I1−β
a+ φ(x) = 1

Γ (1−β)

∫ x

a
φ(t)

(x−t)β
dt, x ∈ Ω, β ∈ (0, 1),

φ(x), x ∈ Ω, β = 1

and Φ(x) is continuously extended with Φ(x) = 0 for x < a.
Step 2. Taking Φ(x) as the initial distribution of the concentration u1(x, t),

and solving the following direct problem of a first order hyperbolic equation
∂u1

∂t = −∂u1

∂x , (x, t) ∈ Ω × (0, T ],
u1 (x, 0) = Φ (x) , x ∈ Ω,
u1 (0, t) = 0, t ∈ [0, T ].

(3.1)

Step 3. Let u1 (x, t) = w1 (x, t) + Φ (x). Then, w1(x, t) satisfies
∂w1

∂t = −∂w1

∂x − f(x), x ∈ Ω × (0, T ],
w1 (x, 0) = 0, x ∈ Ω,
w1 (0, t) = 0, t ∈ [0, T ],

(3.2)

where f (x) = d
dxΦ (x), that is f(x) = R

0 D
β
xφ (x) for β ∈ (0, 1) and f(x) = φ′(x)

for β = 1. Then the differentiation problem for numerically computing the
fractional derivative and the first order derivative is reduced to reconstructing
the source term f(x) from the overspecified condition

w1(x, T ) = u1(x, T )− Φ(x), (3.3)

where u1(x, t) is the solution to direct problem (3.1) which can be obtained by
the characteristic method that u1(x, t) = Φ(x− t). In the practical application,
the overspecified condition (3.3) is replaced by its noise-contained form with

wδ
1(x, T ) = uδ

1(x, T )− Φδ(x),

Math. Model. Anal., 30(1):74–96, 2025.
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where uδ
1(x, T ) = Φδ(x − T ), and Φδ(x − T ) is obtained from Step 1 after

replacing φ with φδ.
In the subsequent theoretical analysis and numerical algorithm construc-

tion, we also need the solution to direct problem (3.2) with respect to the
source term f(x), that is,

w1(x, t) = −
∫ t

0

f(x− t+ τ)dτ, (x, t) ∈ Ω × (0, T ], (3.4)

where we specify f(x− t+ τ) = 0 if x− t+ τ < 0.

3.2 Existence, uniqueness and conditional stability

As we know, inverse source problems of partial differential equations are always
ill-posed, which means that the solutions of inverse problems may not exist,
may not be unique, or may be unstable. In this subsection, we discuss the
conditional well-posedness of the inverse source problem occurred in Step 3.

Theorem 1. (Existence, uniqueness) Let f(x) have a derivative of first order.
If T is not a period of f(x) together with f(x) = 0, x < a, then the inverse
source problem for reconstructing f(x) from problem (3.2) and the overspecified
condition (3.3) has a unique solution.

Proof. From the solution (3.4) of problem (3.2), we know that

w1(x, T ) = −
∫ T

0

f(x− T + τ)dτ.

Taking the derivative with respect to x on both sides of the above equation,
we have

dw1(x, T )

dx
= −

∫ T

0

f ′(x− T + τ)dτ = −f(x) + f(x− T ).

It follows that

f(x) = f(x− T )− dw1(x, T )

dx
. (3.5)

The existence of f(x) is attributed to f(x) = 0, x < a.
The uniqueness of the inverse solution can be summarized as f(x) = 0 when

w1(x, T ) = 0. In this case, we have

0 = −
∫ T

0

f ′(x− T + τ)dτ = −f(x) + f(x− T ), ∀x ∈ Ω.

Therefore, f(x) = 0 since T is not a period of f(x), which implies that the
inverse solution is unique. The proof is completed. ⊓⊔

Theorem 2. (Conditional stability of source inversion) Let f(x) have a deriva-
tive of first order and f(x) = 0 for x < a. Let T be not a period of f(x) with
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T ≥ b − a, and ∂2w1(x,T )
∂x2 ∈ L2(Ω). If w1(b, T ) = 0 or ∂w1(b,T )

∂x = 0, then the
following estimation is valid:

∥∥f(x)∥∥
L2(Ω)

≤
√∥∥∥∥∂2w1(x, T )

∂x2

∥∥∥∥
L2(Ω)

√∥∥w1(x, T )
∥∥
L2(Ω)

. (3.6)

Proof. Noting that f(x−T ) = 0 when T ≥ b−a and w1(a, T ) = 0, from (3.5)
we have∫ b

a

∣∣f(x)∣∣2 dx =

∫ b

a

∣∣∣∣f(x− T )− ∂w1(x, T )

∂x

∣∣∣∣2 dx =

∫ b

a

(
∂w1(x, T )

∂x

)2

dx

=

(
w1(x, T )

∂w1(x, T )

∂x

)∣∣∣∣∣
b

a

−
∫ b

a

w1(x, T )
∂2w1(x, T )

∂x2
dx

≤

∥∥∥∥∥∂2w1

∂x2
(x, T )

∥∥∥∥∥
L2(Ω)

∥∥w1(x, T )
∥∥
L2(Ω)

.

The above last inequality is obtained by using the Hölder inequality. Thus,

∥∥f(x)∥∥
L2(Ω)

≤
√∥∥∥∥∂2w1

∂x2
(x, T )

∥∥∥∥
L2(Ω)

√∥∥w1(x, T )
∥∥
L2(Ω)

.

The proof is completed. ⊓⊔

Remark 1. The condition w1(b, T ) = 0 in Theorem 2 is trivial in the proposed
method for numerical fractional derivative. Making the following transforma-
tion for Φ(x) as

Φ (x) := Φ (x)− Φ(b)
x− a

b− a
,

we have Φ(a) = Φ(b) = 0. Thus, w1(b, T ) = u1(b, T )− Φ(b) = 0 for T ≥ b− a.

Theorem 3. (Conditional stability of numerical differentiation) Let φ(x) be
smooth enough such that Φ′′(x) ∈ L2(Ω) and

∥∥Φ′′(x)
∥∥
L2(Ω)

≤ M for a constant

M > 0. Under the conditions of Theorem 2, then the following conditional
stabilities hold: ∥∥∥R0Dβ

xφ (x)
∥∥∥
L2(Ω)

≤ Cmax
x∈Ω

√
|φ(x)|

for numerically computing the fractional derivative, and∥∥φ′ (x)
∥∥
L2(Ω)

≤ Cmax
x∈Ω

√
|φ(x)|

for numerically computing the first order derivative with a positive constant C.

Proof. Noting that w1(x, T ) = Φ(x−T )−Φ(x) and the definition of Φ(x), we
have ∥∥∥∥∥∂2w1

∂x2
(x, T )

∥∥∥∥∥
L2(Ω)

≤ 2
∥∥Φ′′(x)

∥∥
L2(Ω)

,

Math. Model. Anal., 30(1):74–96, 2025.
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and for β ∈ (0, 1) have

∥∥w1(x, T )
∥∥2
L2(Ω)

≤ 4
∥∥Φ(x)∥∥2

L2(Ω)
=

4

(Γ (1−β))2

∫ b

a

(∫ x

a

φ (t)

(x−t)
β
dt

)2

dx

≤ 4

(Γ (1− β))2

(
max
x∈Ω

|φ(x)|
)2 ∫ b

a

(∫ x

a

1

(x− t)
β
dt

)2

dx

=
4

(Γ (1− β))2
(b− a)3−2β

(1− β)2(3− 2β)

(
max
x∈Ω

|φ(x)|
)2

.

Meanwhile, noticing that f(x) = R
0D

β
xφ (x), it can be derived directly from

(3.6) that

∥∥∥R0Dβ
xφ (x)

∥∥∥
L2(Ω)

≤
√∥∥∥∥∂2w1

∂x2
(x, T )

∥∥∥∥
L2(Ω)

√∥∥w1(x, T )
∥∥
L2(Ω)

≤ Cmax
x∈Ω

√
|φ(x)|,

where C = 2
√

M(b−a)3/2−β

Γ (2−β)
√
3−2β

. On the other hand, for β = 1 we can easily obtain

that

∥∥φ′ (x)
∥∥
L2(Ω)

≤
√∥∥∥∥∂2w1

∂x2
(x, T )

∥∥∥∥
L2(Ω)

√∥∥w1(x, T )
∥∥
L2(Ω)

≤ Cmax
x∈Ω

√
|φ(x)|,

where C = 2
√
M(b− a)

1
4 .

The proof is completed from the above two inequalities. ⊓⊔

3.3 Regularization method for source inversion

It is easy to see from (3.5) that reconstruction of the source term f(x) is not
stable, and its instability is equivalent to that for numerically computing the
derivative of w1(x, T ). Hence, small errors in the noise data wδ

1(x, T ) of w1(x, T )
will be enlarged dramatically in the solution of source inversion. To overcome
this instability, we adopt the Tikhonov regularization method to reconstruct
the source term, that is, minimizing the Tikhonov functional

Jδ
α(f) =

∥∥∥w1(x, T ; f)− wδ
1(x, T )

∥∥∥2
L2(Ω)

+ α∥f∥2L2(Ω) (3.7)

in a reasonably admissible set S =
{
f
∣∣f ∈ L2(Ω) and |f | ≤ M

}
, where M

is a positive constant. Here, α is a regularization parameter, and w1(x, t; f)
represents the solution to problem (3.2) with respect to f(x).

To numerically solve the minimizing problem of Tikhonov functional (3.7),
we expand f(x) in a finite dimensional space with

f(x) ≈
K∑
i=1

fiξi(x),
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where {ξi(x)}Ki=1 is linearly independent on Ω and is a set of basis functions.
Obviously, problem (3.2) satisfies the superposition principle due to the lin-
earity of the hyperbolic equation and the homogeneity of the initial-boundary
conditions. Therefore, we have

w1(x, T ; f) ≈
K∑
i=1

fiw1(x, T ; ξi(x)),

and w1(x, T ; ξi(x)) = −
∫ T

0
ξi(x− T + τ)dτ = −

∫ x

x−T
ξi(τ)dτ.

Let F = (f1, f2, . . . , fK−1, fK)T . Then we obtain the approximation of
Tikhonov functional (3.7) as follows

Jδ
α(F)=

∥∥∥∥∥∥
K∑
i=1

fiw1(x, T ; ξi(x))−wδ
1(x, T )

∥∥∥∥∥∥
2

L2(Ω)

+α

∥∥∥∥∥∥
K∑
i=1

fiξi(x)

∥∥∥∥∥∥
2

L2(Ω)

. (3.8)

According to the necessary conditions for minimizing functional (3.8), a system
of linear algebraic equations with respect to F can be obtained:

(A+ αG)F = b, (3.9)

where A =(aij)K×K , G = (gij)K×K , b = (bi)K×1, and

aij =

∫ b

a

w1(x, T ; ξi(x))w1(x, T ; ξj(x))dx,

gij =

∫ b

a

ξi(x)ξj(x)dx, bi =

∫ b

a

w1(x, T ; ξi(x))w
δ
1(x, T )dx.

For a given regularization parameter α, we solve system (3.9) and obtain the
discrete solution F ∗ = (f∗

1 , f
∗
2 , . . . , f

∗
K−1, f

∗
K)T . It follows that the regulariza-

tion solution of source term is

fδ
α(x) =

K∑
i=1

f∗
i ξi(x),

which is the numerical approximation of fractional derivative R
0D

β
xφ (x) or first

order derivative φ′(x) for the noise data φδ(x).

3.4 Joint regularization methods for source inversion

Numerical experiments show that the above approach performs poorly at the
right endpoint when numerically computing derivatives. The reason for this
phenomenon may be that the first-order hyperbolic equations in (3.1) and (3.2)
propagate in the characteristic direction (the right-hand direction), and accu-
mulate errors toward the right. Therefore, we construct another approach in
which the hyperbolic equations propagate along the opposite direction of those
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in (3.1) and (3.2), and establish two joint regularization methods for numeri-
cally computing the fractional and the first order derivatives.

From results of Remark 1, we can suppose that Φ(b) = 0 and Φ(x) = 0 for
x > b. Then, take Φ(x) as the initial value of concentration u2(x, t), and solve
the following initial-boundary problem:

∂u2

∂t = ∂u2

∂x , (x, t) ∈ Ω × (0, T ],
u2 (x, 0) = Φ (x) , x ∈ Ω,
u2(b, t) = 0, t ∈ [0, T ].

(3.10)

Subsequently, reconstruct the source term f(x) from problem
∂w2

∂t = ∂w2

∂x + f(x), (x, t) ∈ Ω × (0, T ],
w2 (x, 0) = 0, x ∈ Ω,
w2(b, t) = 0, t ∈ [0, T ],

and the overspecified condition

w2(x, T ) = u2(x, T )− Φ(x), x ∈ Ω. (3.11)

Obviously, f (x) = Φ′(x) = R
0D

β
xφ(x) for β ∈ (0, 1) and f (x) = φ′(x) for β = 1,

u2(x, t) = Φ(x+ t) and w2(x, t) =
∫ t

0
f(x+ t− τ)dτ, where f(x) = 0 for x > b.

Thus, we can stably reconstruct the source f(x) by minimizing the Tikhonov
functional

Jδ
α(f) =

∥∥∥w2(x, T ; f)− wδ
2(x, T )

∥∥∥2
L2(Ω)

+ α∥f∥2L2(Ω) (3.12)

from the noise data wδ
2(x, T ) = uδ

2(x, T )− Φδ(x) in the admissible set S.
In order to obtain better inversion of the source term f(x), we construct two

joint regularization methods, which combine the overspecified conditions (3.3)
and (3.11) to minimize respectively the Tikhonov regularization functionals

Jδ
α(f)=

∥∥∥w1(x, T ; f)−wδ
1(x, T )

∥∥∥2
L2(Ω)

+
∥∥∥w2(x, T ; f)−wδ

2(x, T )
∥∥∥2
L2(Ω)

+α∥f∥2L2(Ω)

(3.13)
and

Jδ
α(f)=

∥∥∥w1(x, T ; f)+w2(x, T ; f)−wδ
1(x, T )−wδ

2(x, T )
∥∥∥2
L2(Ω)

+α∥f∥2L2(Ω)

(3.14)
in the reasonably admissible set S, where α is a regularization parameter. The
implementation of minimizing regularized functionals (3.12)–(3.14) is same to
that of minimizing (3.7) stated in subsection 3.3. So, we do not repeat it.

3.5 Strategy for choosing regularization parameters

As is known to all, the effectiveness of minimizing Tikhonov regularization
functionals (3.7) and (3.12)–(3.14) depends strongly on the value of regulariza-
tion parameter α [5, 16, 19]. Therefore, how to choose an appropriate value of
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α is very important. Here, we adopt the Morozov’s discrepancy principle [14]
for choosing regularization parameters, that is, choose the value of α satisfying
respectively the following discrepancy equations∥∥∥wj(x, T ; f

δ
α)− wδ

j (x, T )
∥∥∥2
L2(Ω)

= C1δ
2, j = 1, 2, (3.15)∥∥∥w1(x, T ; f

δ
α)−wδ

1(x, T )
∥∥∥2
L2(Ω)

+
∥∥∥w2(x, T ; f

δ
α)−wδ

2(x, T )
∥∥∥2
L2(Ω)

=2C1δ
2

and ∥∥∥w1(x, T ; f
δ
α)+w2(x, T ; f

δ
α)−wδ

1(x, T )−wδ
2(x, T )

∥∥∥2
L2(Ω)

=C2δ
2, (3.16)

where C1 and C2 are positive constants.

4 Numerical experiments

In this section, we give some numerical examples to verify effectiveness of the
proposed methods for numerically computing the derivatives of fractional and
first order. In all examples, we always take Ω = [0, 1] and T = 1.0. Then,
we partition Ω = [0, 1] into N equal subintervals by using equidistant nodes
0 = x0 < x1 < . . . < xN = 1 with stepsize h = 1

200 . The noise is added to φ(x)
in a discrete form

φδ(xi) = φ(xi) + δ ri,

where δ is a noise level and, R = [r0, r1, . . . , rN ] is a random vector subject
to standard normal distribution. R is used repeatedly in all examples for
comparisons. To show the practicability and applications, we choose the piece-
wise linear functions as the basis set to implement the proposed methods,
that is, approximate the source function f(x) by an expansion of functions
ξ1(x), ξ2(x), . . . , ξN+1(x) which defined by

ξ1(x) =

{
x−x1

x0−x1
, x ∈ [x0, x1],

0, x ∈ (x1, xN ],
, ξN+1(x) =

{
0, x ∈ [x0, xN−1).
x−xN−1

xN−xN−1
, x ∈ [xN−1, xN ],

ξi+1(x) =


0, x ∈ [x0, xi−1),
x−xi−1

xi−xi−1
, x ∈ [xi−1, xi],

x−xi+1

xi−xi+1
, x ∈ [xi, xi+1],

0, x ∈ [xi+1, xN ),

, i = 1, 2, . . . , N − 1.

When using strategies (3.15)–(3.16) to choose regularization parameters, we
always take C2 = 2C1, and C1 = 0.00005 for β = 0.3, C1 = 0.005 for β = 0.7,
C1 = 0.5 for β = 1.0, which shows a certain regularity. Now, we only present
the algorithm based on the regularization method of minimizing (3.13) as an
example in the following Algorithm 1.

The first three numerical examples are to calculate the fractional derivatives
with respect to different functions, and the last example is to compare the
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proposed method with some existing methods for computing the fractional
and first order derivatives. In the first three numerical examples, the relative
errors of regularization solutions are presented in Tables 1–3 for orders β =
0.3, 0.7, 1.0, and noise levels δ = 0.001, 0.01, 0.03, respectively. From results in
Tables 1–3, we find that the regularization method of minimizing functional
(3.13) is better than those of minimizing functionals (3.7), (3.12) and (3.14).
Hence, we only give the regularization solutions of minimizing functional (3.13)
in Figures 1–9.

Algorithm 1: Regularization method of minimizing (3.13).

Input: a = 0, b = 1, φδ(xi), xi = ih, h = 1
N , i = 0, 1, . . . , N , T = 1

Output: fδ :=
(
R
0D

β
xφ

δ (x0) ,
R
0D

β
xφ

δ (x1) , . . . ,
R
0D

β
xφ

δ (xN )
)

1 Compute Φδ(xi) = I1−β
a+ φδ(xi) by using (2.5);

2 Solve (3.1) for obtaining uδ
1(xi, t) = Φδ(xi − T );

3 Compute W1 :=
(
wδ

1(x0, T ), w
δ
1(x1, T ), . . . , w

δ
1(xN , T )

)
where

wδ
1(xi, T ) = uδ

1(xi, T )− Φδ(xi), i = 0, 1, . . . , N ;
4 Solve (3.10) for obtaining uδ

2(xi, T ) = Φδ(xi + T );

5 Compute W2 :=
(
wδ

2(x0, T ), w
δ
2(x1, T ), · · · , wδ

2(xN , T )
)
where

wδ
2(xi, T ) = uδ

2(xi, T )− Φδ(xi), i = 0, 1, . . . , N ;
6 Choose the basis functions {ξk(x)}Kk=1;
7 V 1 = zeros(K,N + 1); V 2 = zeros(K,N + 1); R = zeros(K,N + 1);
8 for k = 1 : K do
9 V 1(k, :) =

(
w1(x0, T ; ξk(x)), w1(x1, T ; ξk(x)), . . . , w1(xN , T ; ξk(x))

)
;

10 V 2(k, :) =
(
w2(x0, T ; ξk(x)), w2(x1, T ; ξk(x)), . . . , w2(xN , T ; ξk(x))

)
;

11 R(k, :) =
(
ξk(x0), ξk(x1), . . . , ξk(xN )

)
;

12 end

13 Generate matrices A1, A2 by A1 = V 1 ∗ V 1T , A2 = V 2 ∗ V 2T ;

14 Generate matrices B1, B2 by B1 = V 1 ∗W1T , B2 = V 2 ∗W2T ;

15 Generate matrices G by G = R ∗RT ;

16 Choose α0 = 1 and q = 1
2 ;

17 Let j = 0;
18 while

h ∗ trapz((W5−W1)(W5−W1)T+(W6−W2)(W6−W2)T )>2C1δ
2 do

19 αj = α0q
j ;

20 𭟋 = (A1 +A2 + αjG)−1(B1 +B2);

21 fδ = 𭟋T R;

22 W5 = (w1(x0, T ; f
δ), w1(x1, T ; f

δ), . . . , w1(xN , T ; fδ)) = 𭟋TV 1;

23 W6 = (w2(x0, T ; f
δ), w2(x1, T ; f

δ), . . . , w2(xN , T ; fδ)) = 𭟋TV 2;
24 j = j + 1;

25 end

26 return fδ (Values of the fractional derivative)
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Example 1. Take φ1(x) = 3x − 3x2 − 5
3x

3 + 3x6. So, its Riemann-Liouville
fractional derivative of order β is

R
0D

β
xφ1(x)=

3Γ (1+1)

Γ (1−β+1)
x1−β− 3Γ (2+1)

Γ (2−β+1)
x2−β− 5Γ (3+1)

3Γ (3−β+1)
x3−β+

3Γ (6+1)

Γ (6−β+1)
x6−β ,

and its derivative of first order is φ′
1(x) = 3 − 6x − 5x2 + 18x5. In this ex-

ample, the relative errors of φδ
1(x) are 0.161855%, 1.618551%, 4.855653% for

δ = 0.001, 0.01, 0.03, respectively. The computational results are showed in
Table 1 and Figures 1–3.

Table 1. Example 1 relative errors of regularization solutions.

δ
Relative error =

∥∥∥fδ
β − R

0D
β
xφ

∥∥∥/∥∥∥R0Dβ
xφ

∥∥∥
min(3.7) min(3.12) min(3.13) min(3.14)

β = 0.3
0.001 1.596528e-02 1.467824e-02 6.371363e-03 9.976664e-03
0.01 8.929022e-02 5.381751e-02 2.355025e-02 4.972828e-02
0.03 1.457824e-01 7.672907e-02 4.342223e-02 8.181446e-02

β = 0.7
0.001 7.075689e-02 4.054403e-02 3.237865e-02 4.159473e-02
0.01 2.177177e-01 6.381559e-02 5.997846e-02 1.378819e-01
0.03 2.939425e-01 8.624024e-02 8.615749e-02 1.958447e-01

β = 1.0
0.001 1.756364e-01 5.391811e-02 2.826946e-02 1.355291e-01
0.01 3.796694e-01 1.335865e-01 1.148947e-01 2.932596e-01
0.03 5.509703e-01 2.511444e-01 2.461262e-01 4.094092e-01
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Figure 1. Results of minimizing (3.13) for β = 0.3 and C1 = 0.00005 in Example 1.
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Figure 2. Results of minimizing (3.13) for β = 0.7 and C1 = 0.5 in Example 1.
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Figure 3. Results of minimizing (3.13) for β = 1.0 and C1 = 0.5 in Example 1.

Example 2. Take φ2(x) = 1
2 sin(7πx) −

3
10 sin(2πx). Obviously, its derivative

of first order is φ′
2(x) = 7

2π cos(7πx) − 3
5π cos(2πx). The exact solutions for

fractional derivatives of order β ∈ (0, 1) are obtained from the exact value
of φ2(x) by using the numerical method presented Subsection 2.2. In this
example, the relative errors of φδ

2(x) are 0.2186717%, 2.186717%, 6.560151%
for δ = 0.001, 0.01, 0.03, respectively. The computational results are showed in
Table 2 and Figures 4–6.

Table 2. Example 2 relative errors of regularization solutions.

δ
Relative error =

∥∥∥fδ
β − R

0D
β
xφ

∥∥∥/∥∥∥R0Dβ
xφ

∥∥∥
min(3.7) min(3.12) min(3.13) min(3.14)

β = 0.3
0.001 1.071734e-02 7.545431e-03 7.718370e-03 9.999962e-03
0.01 4.706951e-02 2.730137e-02 2.871942e-02 4.002675e-02
0.03 8.275197e-02 5.667192e-02 5.882381e-02 7.381842e-02

β = 0.7
0.001 4.121455e-02 2.777151e-02 3.493327e-02 4.184775e-02
0.01 1.076430e-01 5.120607e-02 6.242095e-02 8.756341e-02
0.03 1.585615e-01 9.018222e-02 9.466815e-02 1.262816e-01

β = 1.0
0.001 5.924834e-02 4.679699e-02 1.615752e-02 2.252384e-02
0.01 1.513511e-01 1.187316e-01 6.404829e-02 6.215945e-02
0.03 2.562021e-01 2.175347e-01 1.700716e-01 1.263851e-01
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Figure 4. Results of minimizing (3.13) for β = 0.3 and C1 = 0.00005 in Example 2.
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Figure 5. Results of minimizing (3.13) for β = 0.7 and C1 = 0.005 in Example 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-15

-10

-5

0

5

10

15
Numerical Results of the third approach for β = 1.0

Exact value

δ = 0.001

δ = 0.01

δ = 0.03

(a) Numerical derivatives of first
order

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3
Errors of the third approach for β = 1.0

δ = 0.001

δ = 0.01

δ = 0.03

(b) Errors of numerical first order
derivatives

Figure 6. Results of minimizing (3.13) for β = 1.0 and C1 = 0.5 in Example 2.

Example 3. Take

φ3(x) =

{
−10x2 + 5x, x ∈ [0, 1

2 ],

10x2 − 15x+ 5, x ∈ ( 12 , 1],
φ′
3(x) =

{
−20x+ 5, x ∈ [0, 1

2 ],

20x− 15, x ∈ ( 12 , 1].

Also, the exact solutions for fractional derivatives of order β ∈ (0, 1) are ob-
tained from the exact value of φ3(x) by using the numerical method presented
Subsection 2.2. In this example, the relative errors of φδ

3(x) are 0.1975321%,
1.975321%, 5.925963% for δ = 0.001, 0.01, 0.03, respectively. The computa-
tional results are showed in Table 3 and Figures 7–9.
From numerical results of the above three examples, it can be seen that the
smaller the fractional order, the better the effectiveness of the proposed meth-
ods for numerical differentiation. Furthermore, the proposed methods are very
effective when the error level is small. Especially, the regularization method of
minimizing (3.13) is generally better than the other three methods of minimiz-
ing (3.7), (3.12) and (3.14).
Like the PDEs-based numerical differentiation method in references [25], the
proposed methods in this paper are also based on the source inversion of par-
tial differential equations. Next, let’s take the calculation of the first order
derivative as an example to compare the effectiveness between the method of
minimizing (3.13) and the PDEs-based one of reference [25].
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Table 3. Example 3 relative errors of regularization solutions.

δ
Relative error =

∥∥∥fδ
β − R

0D
β
xφ

∥∥∥/∥∥∥R0Dβ
xφ

∥∥∥
min(3.7) min(3.12) min(3.13) min(3.14)

β = 0.3
0.001 1.350497e-02 5.176865e-03 7.350985e-03 8.447939e-03
0.01 5.090400e-02 2.290229e-02 2.445106e-02 4.012851e-02
0.03 7.531465e-02 4.619148e-02 4.507702e-02 6.952910e-02

β = 0.7
0.001 6.246526e-02 2.575625e-02 4.446216e-02 3.871467e-02
0.01 1.403841e-01 6.461969e-02 6.636020e-02 1.139471e-01
0.03 1.816194e-01 1.055957e-01 8.369378e-02 1.667994e-01

β = 1.0
0.001 1.131460e-01 1.132491e-01 1.831613e-02 1.226036e-01
0.01 2.221883e-01 2.277898e-01 7.614857e-02 2.615364e-01
0.03 3.249182e-01 3.257938e-01 1.723761e-01 3.621127e-01
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Figure 7. Results of minimizing (3.13) for β = 0.3 and C1 = 0.00005 in Example 3.
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Figure 8. Results of minimizing (3.13) for β = 0.7 and C1 = 0.005 in Example 3.

Example 4. Comparisons with some existing methods for computing the frac-
tional order and first order derivatives of the above three functions φi(x), i =
1, 2, 3 with different noise levels δ = 0.0001, 0.0005, 0.001, 0.01, 0.03 and the
same random noise vector R. Relative errors between the exact derivatives and
the corresponding numerical solutions are listed in Tables 4–6, and numerical
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Figure 9. Results of minimizing (3.13) for β = 1.0 and C1 = 0.5 in Example 3.

results of the first order derivatives for δ = 0.001 are showed in Figure 10.
Here M1 represents the method of minimizing (3.13); M2 represents the PDEs-
based method proposed in reference [25]; M3 represents the Lanczos’ method
presented in reference [34]; M4 represents the B-spline based method given in
reference [23]; M5 is the Jacobi spectral method provided in reference [38].
From results of Table 4 and Figure 10, we find that the numerical derivatives of
first order of M1 are better than the ones of M2 when the noise level is smaller,
but the opposite is true between the numerical derivatives of first order of M1
and the ones of M3. The reason of these phenomena may be that both the heat
diffusion equation and the corresponding regularization [25] can suppress larger
noise at the same time, and the Lanczos’ method requires data from outside the
interval Ω when calculating the derivatives near the endpoint. From Figure 10,
we can also see that accuracy of M1 is better near the endpoints while accuracy
of M2 is little better in the middle part of interval Ω. Meanwhile, numerical
results in Tables 5 and 6 show that the proposed method of minimizing (3.13)
is superior to B-spline based method (M4) and the Jacobi spectral method
(M5), since the two latter methods are sensitive to larger noise so that some
appropriate regularization techniques may be required.

Table 4. Comparing minimizing (3.13) with the M1 and M2 methods for β = 1.0.

Relative errors between the exact and regularization solutions
δ=0.0001 δ=0.0005 δ=0.001 δ=0.01 δ=0.03

φ1(x)
M1 8.215536e-03 1.938692e-02 2.826946e-02 1.148947e-01 2.461262e-01
M2 5.929323e-02 7.611632e-02 8.064482e-02 9.724040e-02 8.516548e-02
M3 2.496119e-03 9.055309e-03 1.967900e-02 1.284523e+00 1.926497e+01

φ2(x)
M1 4.652172e-03 1.151011e-02 1.615752e-02 6.404829e-02 1.700716e-01
M2 2.743994e-02 3.523590e-02 3.918616e-02 6.979682e-02 1.396360e-01
M3 1.194272e-02 3.557661e-02 5.596699e-02 2.540363e-01 2.323064e+00

φ3(x)
M1 5.882776e-03 1.281768e-02 1.831613e-02 7.614857e-02 1.723761e-01
M2 2.491232e-02 3.164266e-02 3.872320e-02 6.674063e-02 8.336076e-02
M3 7.057460e-03 1.360892e-02 2.281829e-02 8.711955e-01 1.105324e+01

Math. Model. Anal., 30(1):74–96, 2025.

https://doi.org/10.3846/mma.2025.19339


92 Z. Wang, S. Qiu, X. Rui and W. Zhang

Table 5. Comparing minimizing (3.13) with the M4 and M5 methods for β = 0.7.

Relative errors between the exact and regularization solutions
δ=0.0001 δ=0.0005 δ=0.001 δ=0.01 δ=0.03

M1 2.218375e-02 2.804790e-02 3.237865e-02 5.997846e-02 8.615749e-02
M4 2.668845e-02 2.810264e-02 3.148385e-02 1.565093e-01 4.599641e-01
M5 1.090776e-02 5.453880e-02 1.090776e-01 1.090776e+00 3.272328e+00

φ2(x)
M1 2.753688e-02 3.155913e-02 3.493327e-02 6.242095e-02 9.466815e-02
M4 3.640491e-02 3.669049e-02 3.733784e-02 8.002699e-02 2.137145e-01
M5 3.981085e-03 1.954361e-02 3.910807e-02 3.914811e-01 1.174556e+00

φ3(x)
M1 3.309556e-02 4.003899e-02 4.446216e-02 6.636020e-02 8.369378e-02
M4 3.942603e-02 4.031215e-02 4.242696e-02 1.463355e-01 4.203445e-01
M5 1.106476e-02 5.444219e-02 1.088051e-01 1.087609e+00 3.262759e+00

Table 6. Comparing minimizing (3.13) with the M4 and M5 methods for β = 0.3.

Relative errors between the exact and regularization solutions
δ=0.0001 δ=0.0005 δ=0.001 δ=0.01 δ=0.03

φ1(x)
M1 2.383282e-03 4.435124e-03 6.371363e-03 2.355025e-02 4.342223e-02
M4 6.354648e-03 6.588961e-03 7.199635e-03 3.290840e-02 9.664872e-02
M5 5.698683e-04 2.849342e-03 5.698683e-03 5.698683e-02 1.709605e-01

φ2(x)
M1 4.231292e-03 5.980453e-03 7.718370e-03 2.871942e-02 5.882381e-02
M4 1.222714e-02 1.232346e-02 1.255847e-02 2.850274e-02 7.742369e-02
M5 1.031295e-03 2.366986e-03 4.484589e-03 4.427122e-02 1.328839e-01

φ3(x)
M1 3.403974e-03 5.476084e-03 7.350985e-03 2.445106e-02 4.507702e-02
M4 7.740294e-03 7.950835e-03 8.479624e-03 3.308243e-02 9.613757e-02
M5 7.308849e-04 3.105115e-03 6.166354e-03 6.146931e-02 1.843877e-01
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Figure 10. Comparisons for δ = 0.001 between minimizing (3.13) and the method in [25].
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5 Conclusions

Four regularization methods based on the direct and inverse problems of first or-
der hyperbolic equations are proposed for numerically computing the fractional
order and the first order derivatives, and the corresponding existence, unique-
ness and conditional stability are analyzed. Compared with the PDEs-based
numerical differentiation method presented in [25, 32], the proposed methods
are simpler and easier to be implemented. Results of numerical examples show
that the proposed methods with the Morozov’s discrepancy principle for choos-
ing regularization parameters are very effective in the cases of small noise levels.
However, the implementation of Morozov’s discrepancy principle becomes im-
practical when the noise level is not known. Consequently, it is imperative to
investigate whether the proposed methods demonstrate equal or superior effi-
cacy under alternative strategies for selecting regularization parameters, such as
the L-curve technique or the GCV approach in future studies. Additionally, in-
vestigating the potential of employing alternative regularization methods, such
as the mollification method, regularization methods with total variation and L1

penalty term, in source term inversion is also valuable to ascertain the possibil-
ity of achieving improved results of numerical derivatives. Further examination
is needed to compare the methods with more other numerical differentiation
approaches. Moreover, applying the proposed methods to solve multivariate
numerical derivatives from noise data also requires further research.
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