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1 Introduction

Some phenomena in nature can be modeled by nonlinear ordinary differen-
tial equation systems, as used in physics, engineering, finance, biology, and so
on [2, 3, 13]. Many numerical methods, such as Legendre wavelet collocation
method, novel Petrov-Galerkin method, RBF (Radial Base Function) collo-
cation approach, (HPM) Homotopy Perturbation Method as an especial case
of (HAM) Homotopy Analysis Method, discontinuous Galerkin method, and
(VIM) Variational Iteration Method, have been provided to solve linear and
nonlinear ordinary differential equation systems [5, 6, 7, 9, 10].

In the last decade, the RKM has been considered as a solution for different
types of differential equations and systems of differential equations. For exam-
ple, the RKM has been used to nonlinear singular boundary value problems,
nonlinear C-q-fractional IVPs, linear systems of second-order boundary value
problems, systems of linear Volterra integral and equations, solve coupled sys-
tems of fractional order [12,15,16,17,20]. The advantages of the RKM are easy
implementation and acceptable accuracy in estimating approximate solutions.
Recently, the RKM has been used in different forms, with and without the
Gram-Schmidt orthogonalization process. The numerical results show that the
RKM without the Gram-Schmidt orthogonalization process has greater accu-
racy [18,19]. In addition, due to the elimination of the Gram-Schmidt orthogo-
nalization process, we have a reduced volume of calculations. Lower calculation
volume and higher accuracy encouraged us to present our own method.

In the present method, spaces, bases, and collocation points are effective
in determining the accuracy of the method. For this purpose, we used the
desirable space as a direct sum of two other spaces according to the type of
operator and the order of the derivative. Then, we introduced the bases of these
two spaces using the unit vector and the bases of the used space. Next, using the
self-adjoint operator and applying some relations, we constructed the coefficient
matrix. Finally, to obtain the unknown vector, we multiply the inverse of the
coefficient matrix by the vector on the right. Simplicity of implementation,
acceptable accuracy, low volume of operation, and the elimination of the Gram-
Schmidt process are prominent features of the present method.

In this paper, we compare the present method with a combination of the
HPM and RKM (briefly, HP-RKM). The perturbation method and homotopy
technique are traditional methods. The HPM does not require the discretiza-
tion of the problem, making it suitable for finding the approximate solution
without discretization of the problem and it is a special case of HAM (Homo-
topy Analysis Method). The HP-RKM was successfully applied to (BVPs) and
partial differential equations [8]. We will show that our method is much more
efficient than the HP-RKM. This paper has been structured into the following
chapters.

In Section 2, the definitions and essential theorems related to the present
method are provided. Additionally, at the end of this section, the present
method is implemented for systems of nonlinear equations. In Section 3, the-
orems related to the existence of a solution, convergence, and error estimation
are presented. In Section 4, three examples are solved using the present method
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and their numerical results are presented in the form of tables and figures. Fi-
nally, we conclude in the last section.

Consider the following nonlinear system of BVPs in the reproducing kernel
space  L11θ1 + L12θ2 = f1(τ)− σ1(τ, θ(τ)), 0 ≤ τ ≤ 1,

L21θ1 + L22θ2 = f2(τ)− σ2(τ, θ(τ)),
θi(a) = θi(b) = γ, i = 1, 2,

(1.1)

where τ ∈ Ω = [a, b] = [0, 1], Li,j : W3
2 [0, 1] → W1

2 [0, 1], i, j = 1, 2 are linear
operators, σd(., .) are nonlinear operators, fd(.) are given functions for d = 1, 2.
Let θ(.) = (θ1(.), θ2(.))

T is unknown vector function which to be determined.
In Equation (1.1), we suppose

L11θ1 = θ′′1 (τ) + a1(τ)θ
′
1(τ) + a2(τ)θ1(τ),

L12θ2 = θ′′2 (τ) + a3(τ)θ
′
2(τ) + a4(τ)θ2(τ),

L21θ1 = θ′′1 (τ) + b1(τ)θ
′
1(τ) + b2(τ)θ1(τ),

L22θ2 = θ′′2 (τ) + b3(τ)θ
′
2(τ) + b4(τ)θ2(τ),

where ai(.), bi(.) are given functions for i = 1, 2, 3, 4. For matrix notation, we
define the linear operator L as:

L =

(
L11 L12

L21 L22

)
.

Also, we define F = (f1, f2), σ = (σ1, σ2), so Equation (1.1) can be written in
the following form{

L(θ(τ)) = F (τ)− σ(τ, θ(τ)), 0 < τ < 1,
θi(a) = θi(b) = γ, i = 1, 2.

(1.2)

In the nonlinear case, we consider Equation (1.2) by the following iterative
scheme

L(θn(τ)) = F (τ)− σ(τ, θn−1(τ)), n = 2, 3, . . . , (1.3)

with L(θ1(τ)) = F (τ), see [4] for more details.

2 Main idea

In this section, we defined the reproducing kernel space, their kernels and
several theorems and lemmas.

In this paper, we consider the Hilbert space Wk
2 [a, b] =

{
θ(.)|θ(k−1)(.) is

absolutely continuous, θ(k)(.) ∈ L2[a, b], θ(a) = θ(b) = 0
}
,

⟨θ(.), α(.)⟩Wk
2
=

k−1∑
i=0

θ(i)(a) α(i)(a) +

∫ b

a

θ(k)(τ)α(k)(τ)dτ,

∥θ(.)∥Wk
2
=
√

⟨θ, θ⟩Wk
2
, θ(.), α(.) ∈ Wk

2 [a, b],

Math. Model. Anal., 29(4):669–683, 2024.
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where k is a natural number. Also, we consider the Hilbert space

W k1,k2

2 [a, b] = Wk1
2 [a, b]⊕Wk2

2 [a, b],

with the inner product and norm

⟨θ, α⟩
W

k1,k2
2

= ⟨θ1, α1⟩Wk1
2

+ ⟨θ2, α2⟩Wk2
2
, ∥θ∥

W
k1,k2
2

=

(
2∑

i=1

∥θi∥2Wki
2

)1/2

,

where θ = (θ1, θ2)
T , α = (α1, α2)

T , θi, αi ∈ Wki
2 [a, b] for natural numbers ki,

and i = 1, 2. According to Equation (1.3), we have

θ ∈W 3,3
2 [0, 1], F − σ ∈W 1,1

2 [0, 1].

Lemma 1. If Li,j in (1.1) are bounded linear operators, then L :W 3,3
2 [0, 1] →

W 1,1
2 [0, 1] is a bounded linear operator, where

L =

(
L11 L12

L21 L22

)
,

and the boundedness of Lij implies that L is bounded, also the adjoint operator
of L is

L∗ =

(
L∗
11 L∗

12

L∗
21 L∗

22

)
,

where L∗
ij is the adjoint operator of Lij , [9].

Lemma 2. The spaces W3
2 [0, 1], W2

2 [0, 1] and W1
2 [0, 1] are reproducing kernel

Hilbert space and their reproducing kernels are given as follows respectively,

Ry(τ) =

{
R(y, τ), τ ≥ y,
R(τ, y), τ < y,

R̄y(τ) =

{
R̄(y, τ), τ ≥ y,
R̄(τ, y), τ < y,

R̃y(τ) =

{
R̃(y, τ), τ ≥ y,

R̃(τ, y), τ < y,

where

R(y, τ) = y5/120 + (τ(864y − 720y2 − 240y3 − 36y4 − 24y5))/3744

+ (τ2(−360y + 378y2 + 126y3 + 15y4 − 3y5))/1872 + (τ3(−120y − 30y2

− 10y3 + 5y4 − y5))/1872 + (τ5(−120y − 30y2 − 10y3 + 5y4 − y5))/18720

+ (τ4(120y + 30y2 + 10y3 − 5y4 + y5))/3744,

R(τ, y) = (τ(864y−720y2−240y3+120y4−24y5))/3744 + (τ2(−360y+378y2

− 30y3+15y4−3y5))/1872+(τ5(156−120y−30y2−10y3+5y4−y5))/18720
+ (τ3(−120y + 126y2 − 10y3 + 5y4 − y5))/1872

+ (τ4(−36y + 30y2 + 10y3 − 5y4 + y5))/3744,



A New Approach for Solving a ... 673

R̄(y, τ) = 1/48τ3(−8 + 6y + 3y2 − y3) + 1/16τ2(2y − 3y2 + y3)

+ 1/16τ(4y − 6y2 + 2y3), R̄(τ, y) = −(y3/6) + 1/48τ3(6y + 3y2 − y3)

+ 1/16τ2(−6y − 3y2 + y3) + 1/16τ(4y + 2y2 + 2y3),

R̃(y, τ) = 1 + y, R̃(τ, y) = 1 + τ.

Let {τl}∞l=1 is a node set on [0, 1], we can deduce that:

φlj(τ) = R̃τ (τl)
−→ej =

 (R̃τ (τl), 0)
T , j = 1,

(0, R̃τ (τl))
T , j = 2,

and ψlj(τ) = L∗φlj(τ) are reproducing kernels of W 1,1
2 [0, 1] and W 3,3

2 [0, 1],
respectively, where −→ej denotes the vector in R2 with 1 in the jth coordinate
and 0’s elsewhere, [4]. It can be proved that,

〈
ψsi(.),ψlj(.)

〉
W 3,3

2

=


0, i ̸= j,

∥Rτs∥
2
, s = l, i = j,

Rτs(τl), s ̸= l, i = j.

Theorem 1. For j = 1, 2 and l = 1, 2, . . . ,

ψlj(τ) = LRτl(τ)
−→ej .

Proof. By applying the reproducing properties [4],

ψlj(τ)=
〈
L∗R̃τ (.)

−→ej , Rτl(.)
−→ej
〉
W 3,3

2

=
〈
R̃τ (.)

−→ej ,LRτl(.)
−→ej
〉
W 1,1

2

=LRτl(τ)
−→ej .

⊓⊔

Theorem 2. If {τl}∞l=1 is dense on [0, 1], then
{
ψlj(τ)

}(∞,2)

(1,1)
is a complete

function system in W 3,3
2 [0, 1].

Proof. For each fixed θ(τ) ∈W 3,3
2 [0, 1] if

〈
θ(τ),ψlj(τ)

〉
= 0, then

0 =
〈
θ(τ),ψlj(τ)

〉
=
〈
θ(τ),L∗φlj(τ)

〉
=
〈
Lθ(τ),φlj(τ)

〉
=
〈
Lθ(τ), R̃τ (τl)

−→ej
〉
= Lθ(τl).

Taking into account the density of {τl}∞l=1, then θ(τl) = 0. So, the proof is
complete. ⊓⊔

Lemma 3. For each fixed N ,
{
ψlj(τ)

}(N,2)

(1,1)
is linearly independent in

W 3,3
2 [0, 1], [11].

Theorem 3. If {τs}∞s=1 is dense on [0, 1] and the solution of Equation (1.2) is
unique, then this solution is

θ(τ) =

∞∑
l=1

2∑
j=1

cj,lψlj(τ). (2.1)

Math. Model. Anal., 29(4):669–683, 2024.
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Proof. Substituting Equation (2.1) into Equation (1.2), then

Lθ(τs) = ⟨Lθ(τ),φsi(τ)⟩ = ⟨θ(τ),L∗φsi(τ)⟩

=

〈 ∞∑
l=1

2∑
j=1

cj,lψlj(τ),ψsi(τ)

〉
=

∞∑
l=1

2∑
j=1

cj,l
〈
ψlj(τ),ψsi(τ)

〉
=

∞∑
l=1

2∑
j=1

cj,lψlj(τs) = F (τs)− σ(τ, θ(τs)).

So, θ(τ) is the solution of Equation (1.2), where cj,l for j = 1, 2 and l = 1, . . .
are the unknown numbers to be determined. If Equation (1.2) is linear, then
σ = 0 and the approximate solution is

θN (τ) =

N∑
l=1

2∑
j=1

cj,lψlj(τ),

that cj,l for j = 1, 2 and l = 1, . . . , N are the unknown numbers to be deter-
mined and the proof is complete. ⊓⊔

In continuation we want to obtain the matrix notation for the unknowns
in Equation (2.1). If Equation (1.2) is nonlinear, we give θ1(.), n, N and the
approximate solution is

θn,N (τ) =

N∑
l=1

2∑
j=1

cj,l,nψlj(τ), n = 2, 3, . . . , (2.2)

where n is the number of the iteration for nonlinear term σ(τ, θn−1,l(τ)), N is
number of collocation points on [0, 1] and coefficients cj,l,n obtained as follows:
substituting Equation (2.2) into Equation (1.2) and for sufficiently large N, we
get Lθn,N (τ) = F (τ) − σ(τ, θn−1,N (τ)), according to the Theorem 3 , we can
write

N∑
l=1

2∑
j=1

cj,l,nψlj(τs) = F (τs)− σ(τ, θn−1,N (τs)), (2.3)

where s = 1, 2, . . . , N is number of collocation points. Now, using Theorem 1
we have

N∑
l=1

2∑
j=1

cj,l,nψlj(τs) =

N∑
l=1

c1,l,nψl1(τs) +
N∑
l=1

c2,l,nψl2(τs)

=

N∑
l=1

c1,l,n(LRτl(τs)
−→e1) +

N∑
l=1

c2,l,n(LRτl(τs)
−→e2)
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=L

N∑
l=1

c1,l,nRτl(τs)
−→e1 +L

N∑
l=1

c2,l,nRτl(τs)
−→e2

=

(
L11 L12

L21 L22

) N∑
l=1

c1,l,nRτl(τs)

0

+

(
L11 L12

L21 L22

) 0
N∑
l=1

c2,l,nRτl(τs)



=

L11

N∑
l=1

c1,l,nRτl(τs)

L21

N∑
l=1

c1,l,nRτl(τs)

+

L12

N∑
l=1

c2,l,nRτl(τs)

L22

N∑
l=1

c2,l,nRτl(τs)



=

L11

N∑
l=1

c1,l,nRτl(τs) + L12

N∑
l=1

c2,l,nRτl(τs)

L21

N∑
l=1

c1,l,nRτl(τs) + L22

N∑
l=1

c2,l,nRτl(τs)



=


N∑
l=1

L11Rτl(τs)
N∑
l=1

L12Rτl(τs)

N∑
l=1

L21Rτl(τs)
N∑
l=1

L22Rτl(τs)

( c1,l,n
c2,l,n

)
.

Also,

F (τs)− σ(τ, θn−1,N (τs)) =

(
f1(τs)
f2(τs)

)
−
(

σ1(τ, θn−1,N (τs))
σ2(τ, θn−1,N (τs))

)
.

So, according to Equation (2.3) we can deduce that


N∑
l=1

L11Rτl(τs)
N∑
l=1

L12Rτl(τs)

N∑
l=1

L21Rτl(τs)
N∑
l=1

L22Rτl(τs)

( c1,l,n
c2,l,n

)
=

(
f1(τs)
f2(τs)

)

−
(

σ1(τ, θn−1,N (τs))
σ2(τ, θn−1,N (τs))

)
. (2.4)

Then,

A =


N∑
l=1

L11Rτl(τs)
N∑
l=1

L12Rτl(τs)

N∑
l=1

L21Rτl(τs)
N∑
l=1

L22Rτl(τs)

 ,

C =

(
c1,l,n
c2,l,n

)
,F =

(
f1(τs)
f2(τs)

)
−
(

σ1(τ, θn−1,N (τs))
σ2(τ, θn−1,N (τs))

)
,

therefore, we can write A C = F , finally, according to the Lemma 3 A−1 is
exist and C = A−1 F .

Math. Model. Anal., 29(4):669–683, 2024.
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3 Error estimation

Lemma 4. Let S =
{
θ(.) = (θ1(.), θ2(.)) | ∥θ∥W 3,3

2
≤ λ

}
is a compact set in

space C2[0, 1], where λ is a constant, [19].

Lemma 5. Assume in system (1.2), ∥θ∥W 3,3
2

is bounded, {τs}∞s=1 is dense set

on [0, 1], L(θ(.)) is an invertible continuous function of θ(.), and σ(., θ(.)) is
a continuous function of θ(.), then the exact solution θ(.) and the approximate
solution θn,N (.) for Equation (1.2) are existent, [19].

Theorem 4. If θ(.) = (θ1(.), θ2(.)) ∈ W 3,3
2 is the solution of Equation (1.2)

then the approximate solution θn,N (.) = (θ1,n,N (.), θ2,n,N (.)) and its derivative

θ
(i)
n,N (.) = (θ

(i)
1,n,N (.), θ

(i)
2,n,N (.)),

converges uniformly to θ(.) and θ(i)(.), respectively, for i = 1, 2.

Proof. By the summation of the two equations in Equation (1.1), we have

θ′′1 (τ) + c(τ)θ′1(τ) + d(τ)θ1(τ) + σ1(τ, θ(τ)) = f(τ), (3.1)

where c(.), d(.), f(.) and σ1(.) are known functions. Clearly, Equation (3.1) is
a nonlinear equation in reproducing kernel space Wk

2 [0, 1], In addition, from
Lemma 5 we know that θ1,n,N (.) is the approximate solution of θ1(.), then

|θ1(τ)− θ1,n,N (τ)| = | ⟨θ1 − θ1,n,N , Rτ ⟩ | ≤ ∥θ1 − θ1,n,N∥Wk
2
∥Rτ∥Wk

2

≤ P1 ∥θ1 − θ1,n,N∥Wk
2
.

Also, for first derivative we have

|θ
′

1(τ)− θ
′

1,n,N (τ)| = | ∂
∂τ

(⟨θ1 − θ1,n,N , Rτ ⟩Wk
2
)| =

∣∣∣ 〈θ1 − θ1,n,N ,
∂

∂τ
Rτ

〉
Wk

2

∣∣∣
≤ ∥θ1 − θ1,n,N∥Wk

2

∥∥∥∥ ∂∂τ Rτ

∥∥∥∥
Wk

2

≤ Z1 ∥θ1 − θ1,n,N∥Wk
2
,

where P1 and Z1 are constants. Similarly, we have

|θ2(τ)− θ2,n,N (τ)| ≤ P2 ∥θ2 − θ2,n,N∥Wk
2
,

|θ
′

2(τ)− θ
′

2,n,N (τ)| ≤ Z2 ∥θ2 − θ2,n,N∥Wk
2
.

⊓⊔

Theorem 5. Let θ(.) = (θ1(.), θ2(.)) and θn,N (.) = (θ1,n,N (.), θ2,n,N (.)) be the
exact and approximate solution of Equation (1.2), respectively. If θ ∈ C3[0, 1],
θn,N ∈W 3,3

2 [0, 1] and
∥∥θ′′i,n,N∥∥∞ ≤Mi, i = 1, 2, then for j = 1, 2

∥θj − θj,n,N∥∞ ≤ Cjh
3,

∥∥θ′j − θ′j,n,N
∥∥
∞ ≤ Cjh

2,

where Cj is a constant, [1].
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Remark 1. According to the Lemma 3, A−1 exists then the solution of Equa-
tion (1.2) is exist and unique. Furthermore, we can conclude that the present
method is stable in W 3,3

2 [0, 1].

Remark 2. In the present method, the choice of space depends on the type of
problem. For example, in Examples 2 and 3, the highest derivative order for
θ1 and θ2 is equal to 2. As a result, θ1, θ2 ∈ W3

2 [0, 1], and the appropriate
space for these two examples is L :W 3,3

2 [0, 1] →W 1,1
2 [0, 1]. But in Example 1,

the highest order of the derivative for θ1 and θ2 is 2 and 1, respectively. As
a consequence, θ1 ∈ W3

2 [0, 1] and θ2 ∈ W2
2 [0, 1], so the appropriate space for

Example 1 is L : W 3,2
2 [0, 1] → W 1,1

2 [0, 1]. Of course, it is clear that with
the change of space, the convergence order will also change. Therefore, in
Example 1, the convergence order of θ2 and θ′2 will be as follows

∥θ2 − θ2,n,N∥∞ ≤ C2h
2,

∥∥θ′2 − θ′2,n,N
∥∥
∞ ≤ C2h.

Remark 3. In this paper, the convergence formulas can be obtained:

C.Fi = log2
∥θi − θi,n,N∥∞
∥θi − θi,n,2N∥∞

, C.F ′
i = log2

∥θ′i − θ′i,n,N∥∞
∥θ′i − θ′i,n,2N∥∞

,

where i = 1, 2.

4 Numerical results

In this section, we solve three numerical examples by the present method. We
show that the present method (PM) is better than the methods of [8] and [9].

Example 1. [8] Consider the non-linear system of the BVP θ′′1 (τ) + τθ1(τ) + 2τθ2(τ) + τθ21(τ) = f(τ), 0 < τ < 1,
θ′2(τ) + θ2(τ) + τ2θ1(τ) + sin(τ)θ22(τ) = g(τ),
θ1(0) = θ1(1) = 0, θ2(0) = θ2(1) = 0,

where θ(τ) = [τ − τ2, sin(πτ)]. We solved this example using Equation (2.4) in
W 3,2

2 [0, 1] and compared the present method to other methods in Tables 1 and
2. The numerical results for the convergence order are given in Table 3.

Example 2. Consider the non-linear system of the BVP θ′′1 (τ) + τθ′1(τ) + cos(πτ)θ′2(τ) = f(τ), 0 < τ < 1,
θ′′2 (τ) + τθ′1(τ) + τθ21(τ) = g(τ),
θ1(0) = θ1(1) = 0, θ2(0) = θ2(1) = 0,

where θ(τ) = [(τ − 1) sin(πτ), τ − τ2]. We solved this example using Equa-
tion (2.4) inW 3,3

2 [0, 1] and Table 4 shows that the absolute error of the present
method and other methods, while Table 5 shows the convergence orders. In
Figures 1 and 2 we compared the absolute errors in the present method and
method in [8] via the independent variable τ .

Math. Model. Anal., 29(4):669–683, 2024.
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Table 1. Example 1: Absolute errors for θ1.

τ [9] [5] [8] [8] PM PM
θ1 θ1 θ1,5,21 θ1,5,51 θ1,5,21 θ1,5,51

0.08 5.0× 10−4 1.4× 10−4 7.7× 10−5 2.0× 10−5 1.2× 10−4 1.6× 10−6

0.24 1.4× 10−3 4.4× 10−5 2.2× 10−4 5.7× 10−5 1.1× 10−4 5.2× 10−7

0.40 2.1× 10−3 6.7× 10−5 3.3× 10−4 8.6× 10−5 9.7× 10−5 5.7× 10−7

0.56 2.2× 10−3 9.3× 10−5 3.7× 10−4 9.8× 10−5 7.5× 10−5 1.0× 10−6

0.72 1.8× 10−3 4.9× 10−5 3.1× 10−4 9.4× 10−5 4.8× 10−5 8.6× 10−7

0.88 9.0× 10−4 8.6× 10−5 1.5× 10−4 6.5× 10−5 2.1× 10−5 3.9× 10−7

0.96 3.0× 10−4 7.1× 10−5 5.4× 10−5 1.4× 10−5 6.9× 10−6 1.3× 10−7

Table 2. Example 1: Absolute errors for θ2.

τ [9] [5] [8] [8] PM PM
θ2 θ2 θ2,5,21 θ2,5,51 θ2,5,21 θ1,5,51

0.08 2.0× 10−3 2.4× 10−4 7.1× 10−4 1.1× 10−4 4.2× 10−4 6.5× 10−6

0.24 5.6× 10−3 2.3× 10−3 1.9× 10−3 3.3× 10−4 7.2× 10−4 3.3× 10−5

0.40 7.9× 10−3 8.9× 10−4 2.7× 10−3 4.6× 10−4 2.4× 10−4 5.1× 10−6

0.56 8.2× 10−3 1.4× 10−3 2.8× 10−3 4.8× 10−4 3.4× 10−4 1.9× 10−5

0.72 6.5× 10−3 3.1× 10−3 2.2× 10−3 3.8× 10−4 2.0× 10−4 4.0× 10−5

0.88 3.1× 10−3 1.6× 10−3 1.7× 10−3 2.9× 10−4 8.6× 10−5 5.0× 10−7

0.96 1.0× 10−3 9.8× 10−4 3.6× 10−4 6.2× 10−5 8.4× 10−5 2.6× 10−5

0.0 0.2 0.4 0.6 0.8 1.0

0.000000

5.×10-6

0.000010

0.000015

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-7

1.×10-6

1.5×10-6

2.×10-6

Figure 1. Figures of absolute errors for Example 2 with Method [8]
(Left:|θ2(τ)− θ2,5,21(τ)|; Right: |θ2(τ)− θ2,5,51(τ)| ).
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Figure 2. Figures of absolute errors for Example 2 with Present Method
(Left:|θ2(τ)− θ2,5,21(τ)|; Right: |θ2(τ)− θ2,5,51(τ)| ).
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Table 3. Max absolute error and convergence order.

N = 5 N = 10 N = 20 N = 40

Example 1

∥θ1 − θ1,5,N∥∞ 7.0× 10−3 1.70× 10−3 1.50× 10−4 9.0× 10−6

C.F1 - 2.04182 3.5025 4.07889
∥θ2 − θ2,5,N∥∞ 2.20× 10−2 6.40× 10−3 1.10× 10−3 2.60× 10−4

C.F2 - 1.78136 2.54057 2.08092
∥θ′1 − θ′1,5,N∥∞ 7.30× 10−2 2.80× 10−2 5.60× 10−3 7.50× 10−4

C.F ′
1 - 1.38247 2.32193 2.90046

∥θ′2 − θ′2,5,N∥∞ 3.40× 10−1 1.80× 10−1 7.50× 10−2 3.60× 10−2

C.F ′
2 - 0.917538 1.26303 1.05889

Table 4. Example 2: Absolute errors for θ1.

τ [14] [8] [8] PM PM
θ1 θ1,5,21 θ1,5,51 θ1,5,21 θ1,5,51

0.00 0.00 0.00 0.00 0.00 0.00
0.10 3.0× 10−4 4.4× 10−5 7.1× 10−6 3.9× 10−8 2.2× 10−10

0.30 7.8× 10−3 1.0× 10−4 1.6× 10−5 1.2× 10−8 4.5× 10−10

0.50 2.7× 10−2 1.2× 10−4 1.8× 10−5 3.4× 10−9 4.8× 10−10

0.70 4.6× 10−2 9.6× 10−5 1.5× 10−5 1.2× 10−8 2.7× 10−10

0.90 3.1× 10−2 3.8× 10−5 6.0× 10−6 9.4× 10−8 5.2× 10−11

1.00 0.00 0.00 0.00 0.00 0.00

Table 5. Max absolute error and convergence order.

N = 5 N = 10 N = 20 N = 40

Example 2

∥θ1 − θ1,5,N∥∞ 3.10× 10−4 1.20× 10−5 2.60× 10−7 3.40× 10−9

C.F1 - 4.69116 5.52838 6.25683
∥θ2 − θ2,5,N∥∞ 2.30× 10−4 9.50× 10−6 2.10× 10−7 2.70× 10−9

C.F2 - 4.59756 5.49947 6.28129
∥θ′1 − θ′1,5,N∥∞ 3.50× 10−3 3.40× 10−4 2.70× 10−5 1.70× 10−6

C.F ′
1 - 3.36375 3.6545 3.98935

∥θ′2 − θ′2,5,N∥∞ 2.70× 10−3 2.80× 10−4 2.10× 10−5 1.40× 10−6

C.F ′
2 - 3.26946 3.73697 3.90689

Example 3. [8] Consider the non-linear system of the BVP θ′′1 (τ) + 20θ′1(τ) + 4 cos(τ)θ1(τ) + sin(θ1(τ)θ2(τ)) = f(τ), 0 < τ < 1,
θ′′2 (τ) + 5eτθ′2(τ) + 6 sinh(τ)θ2(τ) + cos(θ2(τ)) = g(τ),
θ1(0) = 1, θ1(1) = e, θ2(0) = 0, θ2(1) = sinh(1),

where θ(τ) = [eτ , sinh(τ)]. Let θ̃1 = θ1 + c0 + c1x, θ̃2 = θ2 + d0 + d1x, where
c0, c1, d0, d1 are determined by letting θ̃1(0) = θ̄1(1) = 0 ,θ̃2(0) = θ̃2(1) = 0.
We solved this example using Equation (2.4) in W 3,3

2 [0, 1]. In Figures 3–6

Math. Model. Anal., 29(4):669–683, 2024.
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Figure 3. Figures of relative errors for Example 3 with Method [8]

(Left:| θ1(τ)−θ1,5,21(τ)

θ1(τ)
|; Right: | θ1(τ)−θ1,5,51(τ)

θ1(τ)
| ).
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Figure 4. Figures of relative errors for Example 3 with Present Method

(Left:| θ1(τ)−θ1,5,21(τ)

θ1(τ)
|; Right: | θ1(τ)−θ1,5,51(τ)

θ1(τ)
| ).
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Figure 5. Figures of relative errors for Example 3 with Method [8]

(Left:| θ2(τ)−θ2,5,21(τ)

θ2(τ)
|; Right: | θ2(τ)−θ2,5,51(τ)

θ2(τ)
| ).
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Figure 6. Figures of relative errors for Example 3 with Present Method

(Left:| θ2(τ)−θ2,5,21(τ)

θ2(τ)
|; Right: | θ2(τ)−θ2,5,51(τ)

θ2(τ)
| ).

we compared the relative errors in the present method and method in [8] via
the independent variable τ . The convergence order and maximum errors for
Figures 1–6 are shown in Tables 6 and 7.
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Table 6. Max absolute error and convergence order.

N = 5 N = 10 N = 20 N = 40

Example 3

∥θ1 − θ1,5,N∥∞ 3.60× 10−4 1.0× 10−5 2.40× 10−7 3.80× 10−9

C.F1 - 5.16993 5.38082 5.98089
∥θ2 − θ2,5,N∥∞ 2.40× 10−4 5.20× 10−6 1.50× 10−7 2.10× 10−9

C.F2 - 5.52838 5.11548 6.15843
∥θ′1 − θ′1,5,N∥∞ 4.60× 10−3 3.50× 10−4 2.60× 10−5 1.90× 10−6

C.F ′
1 - 3.71621 3.75077 3.77444

∥θ′2 − θ′2,5,N∥∞ 2.10× 10−3 1.90× 10−4 1.50× 10−5 1.10× 10−6

C.F ′
2 - 3.46632 3.66297 3.76939

Table 7. Max absolute errors for Figures 1–2 and Max relative errors for Figures 3–6.

Method in [8] Present Method

Example 2

∥θ1 − θ1,5,21∥∞ 1.40× 10−5 1.66× 10−7

∥θ2 − θ2,5,51∥∞ 2.0× 10−6 8.70× 10−10

Example 3

maxτ | θ1(τ)−θ1,5,21(τ)

θ1(τ)
| 1.0× 10−4 7.20× 10−8

maxτ | θ1(τ)−θ1,5,51(τ)

θ1(τ)
| 2.50× 10−5 4.40× 10−10

maxτ | θ2(τ)−θ2,5,21(τ)

θ2(τ)
| 6.20× 10−4 4.50× 10−6

maxτ | θ2(τ)−θ2,5,51(τ)

θ2(τ)
| 1.0× 10−4 8.60× 10−8

5 Conclusions

In this paper, we introduced a new method based on RKM without the Gram-
Schmidt orthogonalization process to solve systems of second-order BVPs. The
numerical results verified that the present method is better than of the method
in [5,8,9,14]. In addition, we solved Example 1 inW 3,2

2 [0, 1] space and Exam-
ples 2 and 3 in W 3,3

2 [0, 1] space. According to Tables 4–6 and the maximum
absolute error, it can be concluded that when bases are selected from two dif-
ferent spaces, as in Example 1, the method is less accurate compared to when
they are selected from one space, as in Examples 2 and 3. Finally, according
to the flexibility in the selection of points, spaces, and bases in the present
method, the suitable strategy can be adopted to solve the different problems.
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