Share:


High concentrations of radon and carbon dioxide in energy-efficient family houses without heat recovery ventilation

    Gábor Géczi Affiliation
    ; József Benécs Affiliation
    ; Krisztina Kristóf Affiliation
    ; Márk Horváth Affiliation

Abstract

The most significant factors of indoor air quality – besides temperature and humidity – are the concentrations of carbon-dioxide (CO2) and radon (222Rn). Radon seepage is caused by and affected by the materials used in walls and floors, the quality of insulation, cracks and even the amount of pipes running through the walls. The amount of CO2 is predominantly affected by the biological processes of the inhabitants, and possibly by potentially faulty HVAC systems. The energy efficiency related upgrades to family homes, which often only extend to window replacements and better insulation have a significant effect and could potentially increase concentrations of both radon and CO2 which has a significant effect on the well-being of the inhabitants. Our tests conducted in Hungary have proven that by using automated heat recovery ventilation (HRV) both energy efficient operation and low concentrations of radon and CO2 are achievable. Our results prove the significance and prevalence of the issue of higher concentrations of these pollutants, and offer a viable solution.

Keyword : indoor air quality, radon, carbon dioxide, energy-efficient building, heat recovery, ventilation

How to Cite
Géczi, G., Benécs, J., Kristóf, K., & Horváth, M. (2018). High concentrations of radon and carbon dioxide in energy-efficient family houses without heat recovery ventilation. Journal of Environmental Engineering and Landscape Management, 26(1), 64-74. https://doi.org/10.3846/16486897.2017.1347095
Published in Issue
Mar 20, 2018
Abstract Views
1128
PDF Downloads
732
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abumurad, K. M. 2001. Chances of lung cancer due to radon exposure in Al-Mazar Al-Shamali, Jordan, Radiation Measurements 34(1–6): 537–540. https://doi.org/10.1016/S1350-4487(01)00223-2

Bánhidi, L.; Kajtár, L. 2000. Komfortelmélet (Comfort Theory). Műegyetemi Kiadó, Budapest (in Hunhgarian)

Baumann, M. (Ed.) 2009. Épületenergetika (Building Energy). Guide book. PTE Pollack Mihály Műszaki Kar, Pécs (in Hungarian).

Becker, K. 2003. Health effects of high radon environments in Central Europe: Another Test for the LNT Hypothesis?, Nonlinearity in Biology, Toxicology, and Medicine 1(1): 3–35. https://doi.org/10.1080/15401420390844447

Benécs, J.; Barótfi, I. 2015. Ablakok energetikai felújítása egyszerűen (Windows simply energy refurbishment), Magyar Épületgépészet 64(5): 21–24 (in Hungarian).

Butkus, D.; Morkünas, G.; Pilkyte, L. 2005. Ionizing radiation in buildings: Situation and dealing with problems, Journal of Environmental Engineering and Landscape Management 13(2): 103–107.

Dagiliūtė, R.; Juozapaitienė, G. 2015. Socio-economic assessment in environmental impact assessment: experience and challenges in Lithuania, Journal of Environmental Engineering and Landscape Management 23(3): 211–220. https://doi.org/10.3846/16486897.2015.1002842

Darby, S.; Hill, D.; Auvinen, A.; Barrios-Dios, J. M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; Heid, I.; Kreienbrock, L.; Kreuzer, M.; Lagarde, F.; Makelainen, I.; Muirgead, C.; Oberaigner, W.; Pershagen, G.; Ruani-Ravina, A.; Ruosteenoja, E.; Rosario, A. S.; Tirmarche, M.; Tomasek, L.; Whitley, E.; Wichmann, H. E.; Doll, R. 2004. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies, British Medical Journal 330: 223–226. https://doi.org/10.1136/bmj.38308.477650.63

Decree of Government 176/2008. (VI.30.). Az épületek energetikai jellemzőinek tanúsításáról [The certification of energy characteristics of buildings] (in Hungarian).

Decree of Government 261/2015. (IX. 14.). Amendening Decree of Government 176/2008. (VI.30.).

Decree of Government 487/2015. (XII. 30.). Az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési, jelentési és ellenőrzési rendszerről [Protection against ionizing radiation and related licensing, reporting and verification system] (in Hungarian).

Decree of TNM 7/2006.(V.24.). Az épületek energetikai jellemzőinek meghatározásáról [The determination of energy characteristics of buildings] (in Hungarian).

Directive 2002/91/EC on energy performance of buildings.

Directive 2010/31/EU on energy efficiency of buildings.

Directive 2012/27/EU on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC.

Ebel, W.; Großklos, M.; Knissel, J.; Loga, T.; Müller, K. 2003. Wohnen in Passiv-und Niedrigenergiehäusern. Institut Wohnen und Umwelt, Darmstadt.

EN 13789:2002. Thermal Performance of buildings – Determination of air permeability of buildings – Fan pressurization method.

EN ISO 11665-1:2012. Measurement of radioactivity in the environment. Air: radon-222. Part 1: Origins of radon and its short-lived decay products and associated measurement methods.

EN ISO 11665-5:2012. Measurement of radioactivity in the environment. Air: radon-222. Part 5: Continuous measurement metho of the activity concentration.

Feist, W.; Schnieders, J.; Dorer, V.; Haas, A. 2005. Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept, Energy and Buildings 37(11): 1186–1203. https://doi.org/10.1016/j.enbuild.2005.06.020

Frontczak, M.; Wargocki, P. 2011. Literature survey on how different factors influence human comfort in indoor environments, Building and Environment 46(4): 922–937. https://doi.org/10.1016/j.buildenv.2010.10.021

Fülöp, O. 2011. NEGAJOULE 2020. A Magyar épületekben rejlő energiamegtakarítási lehetőségek [NEGAJOUL 2020. Energy saving opportunities in Hungarian building]. Report of Energiaklub.

Fülöp, O.; Varga, K. 2013. Lakóépületben elérhető megújulóenergia-potenciál [Available renewable energy potential], Study of Energiaklub.

Géczi, G.; Béres, A. 2011. Levegőtisztaság-védelem [Air Purity Protection]. Lecture Notes. Szent István Egyetem, Gödöllő (in Hungaria).

Goyal, R.; Khare, M.; Kumar, P. 2012. Indoor air quality: current status, missing links and future road map for India, Journal of Civil Environmental Engineering 2: 118. https://doi.org/10.4172/2165-784X.1000118

Hámori, K.; Tóth, E.; Losonci, A.; Minda, M. 2006b. Some remarks on the indoor radon distribution in a country, Applied Radiation and Isotopes 64(8): 859–863. https://doi.org/10.1016/j.apradiso.2006.02.098

Hámori, K.; Tóth, E.; Pál, L.; Köteles, G.; Losonci, A.; Minda, M. 2006a. Evaluation of indoor radon measurements in Hungary, Journal of Environmental Radioactivity 88: 189–198. https://doi.org/10.1016/j.jenvrad.2006.02.002

Hungarian Standards MSZ EN ISO 11665-1:2016 Magyar Szabvány. A környezeti radioaktivitás mérése. Levegő: radon-222, 5. rész Az aktivitáskoncentráció meghatározása folyamatos mérési módszerrel.

Hungarian Standards MSZ EN ISO 11665-1:2016. A környezeti radioaktivitás mérése. Levegő: radon-222, 1. rész: A radon és a rövid felezési idejű bomlástermékek eredete és az ehhez kapcsolódó mérési módszerek.

Hussein, Z. A.; Jaafar, M. S.; Ismail, A. H. 2013. Measurements of Indoor Radon-222 Concentration inside Iraqi Kurdistan: case study in the summer season, Journal of Nuclear Medicine & Radiation Theraphy 4: 143. https://doi.org/10.4172/2155-9619.1000143

ICRP 1991. 1990 Recommendations of the international commission on radiological protection, ICRP Publication 60. Ann. ICRP 21(1–3).

ICRP 1993. Protection Against Radon-222 at Home and at Work. ICRP Publication 65. Ann. ICRP 23(2).

Kačerauskas, T. 2016. Environmental discourses and the question of creative environment in a city, Journal of Environmental Engineering and Landscape Management 24(2): 108–115. https://doi.org/10.3846/16486897.2016.1141097

Kajtár, L.; Szekeres, J. 2011. Tantermek szellőztetése, frisslevegő-ellátása [Classrooms ventilation, fresh air supply, Magyar Installateur 2–3: 64–67 (in Hungarian).

Kalmár, F. 2016. Személyi szellőző berendezés fejlesztése a Debreceni Egyetem Épületgépészeti és Létesítménymérnöki Tanszékén [Developing individual ventillator on Department Building Engineering in Debrecen University], Magyar Épületgépészet 65(4): 3–7 (in Hungarian).

Katona, T.; Kanyár, B.; Somlai, J.; Molnár, Á. 2007. Determining 222Rn daughter activities by simultaneous alpha- and beta-counting and modeling, Journal of Radioanalytical and Nuclear Chemistry 272(1): 69–74. https://doi.org/10.1007/s10967-006-6793-4

Knoll, G. F. 2010. Radiation Detection and Measurement. 4th ed. John Wiley & Sons, Inc.

Köteles, Gy. J. 2007. Radon risk in spas? Central European Journal of Occupational and Environmental Medicine 13(1): 3–16.

Lázár, I.; Tóth, E.; Köteles, Gy. J.; Puhó, E.; Czeizel, A. E. 2005. An inverse association between cancer mortality rate of women and residential radon in 34 Hungarian villages, Journal of Radioanalytical and Nuclear Chemistry 266(1): 43–48. https://doi.org/10.1007/s10967-005-0866-7

Liu, D.; Zhao, F. Y.; Tang G.-F. 2010. Active low-grade energy recovery potential for building energy conservation, Renewable & Sustainable Energy Reviews 14: 2736−2747.

Magyar, Z.; Németh, G.; 2015. Közel nulla energiaigényű középületek követelményrendszere dél- és kelet-európai országokban [Nearly zero energy public buildings’ requirement system in southern and eastern European countries], Magyar Épületgépészet 64(1–2): 3–7 (in Hungarian).

Minda, M.; Tóth, Gy.; Horváth, I.; Barnet, I.; Hámori, K.; Tóth, E. 2009. Indoor radon mapping and its relation to geology in Hungary, Environmental Geology 57(3): 601–609. https://doi.org/10.1007/s00254-008-1329-6

Müllerová, M.; Kozak, K.; Kovács, T.; Smetanová, I.; Csordás, A.; Gradziel, D.; Holy, K.; Mazur, J.; Moravcsik, A.; Neznal, M.; Neznal, M. 2016. Indoor radon survey in Visegrad countries, Applied Radiation and Isotopes 110: 124–128. https://doi.org/10.1016/j.apradiso.2016.01.010

Nikl, I. 1996. The radon concentration and absorbed dose rate in Hungarian dwellings, Radiation Protection Dosimetry 67(3): 225–228. https://doi.org/10.1093/oxfordjournals.rpd.a031821

Nikolopoulos, D.; Kottou, S.; Louizi, A.; Petraki, E.; Vogiannis, E.; Yannakopoulos, P. H. 2014b. Factors affecting indoor radon concentrations of Greek dwellings through multivariate statistics, Journal Physical Chemistry & Biophysics 4: 145. https://doi.org/10.4172/2161-0398.1000145

Nikolopoulos, D.; Petraki, E.; Temenos, N.; Kottou, S.; Koulougliotis, D.; Yannakopoulos, P. H. 2014a. Hurst exponent analysis of indoor radon profiles of Greek apartment dwellings, Journal of Physical Chemistry & Biophysics 4: 168. https://doi.org/10.4172/2161-0398.1000168

Robe, M. C.; Rannou, A.; Bronec, J. L. 1992. Radon Measurement in the Environment in France, Radiation Protection Dosimetry 45(1–4): 455–457. https://doi.org/10.1093/oxfordjournals.rpd.a081580

Schnieders, J. 2009. Passive houses in South West Europe. A quantitative investigation of some passive and active space conditioning techniques for highly energy efficient dwellings in the South West European region. 2nd corrected ed. Passivhaus Institut, Darmstadt.

Somlai, J.; Gorjánácz, Z.; Várhegyi, A.; Kovács, T. 2006. Radon concentration in houses over a closed Hungarian uranium mine, Science of the Total Environment 367(2–3): 653–665. https://doi.org/10.1016/j.scitotenv.2006.02.043

Szabó, K. Zs.; Horváth, Á.; Szabó, Cs. 2014a. Geogén radonpotenciál térképezés Pest és Nógrád megye területén [Geogenically radonpotenciál mapping Pest and Nógrád county], Nukleon 7(153): 9 (in Hungarian).

Szabó, K. Zs.; Jordan, Gy.; Horváth, Á.; Szabó, Cs. 2014b. Mapping the geogenic radon potential: methodology and spatial analysis for Central Hungary, Journal of Environmental Radioactivity 129: 107–120. https://doi.org/10.1016/j.jenvrad.2013.12.009

Szabó, K. Zs.; Jordan, Gy.; Szabó, Cs.; Horváth, Á.; Holm, Ó.; Kocsy, G.; Csige, I.; Szabó, P.; Homoki, Zs. 2014c. Radon and thoron levels, their spatial and seasonal variations in adobe dwellings – a case study at the great Hungarian plain, Isotopes in Environmental and Health Studies 50(2): 211–225. https://doi.org/10.1080/10256016.2014.862533

Szállási, Á. 2001. Pettenkofer, a közegészségtan (nem tévedhetetlen) pápája [Pettenkofer, the (not unerring) pope of public health], Orvosi Hetilap 142(48): 2687–2690 (in Hungarian).

Szerbin, P.; Köteles, Gy.; Stúr, D. 1994. Radon concentrations in Rudas thermal bath, Budapest, Radiation Protection Dosimetry 56(1–4): 319–321. https://doi.org/10.1093/oxfordjournals.rpd.a082479

Tóth, E. 1992. Radon a magyar falvakban [Radon in the Hungarian villages], Fizikai Szemle 2: 44–49 (in Hungarian).

Tóth, E.; Hámori, K. 2005. A lakótéri radonszint eloszlásról [Distribution of indoor radon levels], Fizikai Szemle 11: 375–378 (in Hungarian).

Tóth, E.; Lázár, I.; Selmeczi, D.; Marx, G. 1998. Lower cancer risk in medium high radon, Pathology and Oncology Research 4(2): 125–129. https://doi.org/10.1007/BF02904706

UNSCEAR 2000. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 2000 Report to the General Assembly.

Vasilyev, A.; Yarmoshenko, I. 2016. Effect of energy-efficient measures in building construction on indoor radon in Russia, Radiation Protection Dosimetry. https://doi.org/10.1093/rpd/ncw149

Wang, Y.; Zhao, F. Y.; Kuckelkorn, J.; Liu, D.; Liu, L.-Q.; Pan, X.-C. 2014b. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit, Energy 64: 991−1001.

Wang, Y.; Zhao, F. Y.; Kuckelkorn, J.; Spliethoff, H.; Rank, E. 2014a. School building energy performance and classroom air environment implemented with the heat recovery heat pump and displacement ventilation system, Applied Energy 114: 58−68.

Xu, J.; Zhang, M.; Shao, L.; Kang, J. 2016. Subjective evaluation of the environmental quality in China’s industrial corridors, Journal of Environmental Engineering and Landscape Management 24(1): 21−36.

Zeeb, H.; Shannoun, F. 2009. WHO handbook on indoor radon: a public health perspective. World Health Organization.