Share:


Fixed-bed column adsorption of arsenic(V) by porous composite of magnetite/hematite/carbon with eucalyptus wood microstructure

    Yanhong Li Affiliation
    ; Yinian Zhu Affiliation
    ; Zongqiang Zhu Affiliation
    ; Xuehong Zhang Affiliation
    ; Dunqiu Wang Affiliation
    ; Liwei Xie Affiliation

Abstract

The fixed-bed column adsorption-desorption of As(V) by the porous composite of iron oxides and carbon with eucalyptus wood hierarchical microstructure (PC-Fe/C) was experimentally studied. The increase in the influent As(V) concentration and the inflow rate resulted in an earlier exhaustion of the column. The breakthrough curves indicated that a larger adsorbent mass, a smaller adsorbent grain size and a lower influent pH prolonged the column life span. The operating temperature had negligible effect. All breakthrough curves could be well fitted with the Thomas and Yoon–Nelson models. Under the condition of the influent flow rate of 5.136 mL/min, the influent As(V) concentration of 20 mg/L, the influent pH of 3, the adsorbent mass of 2 g, the adsorbent grain size of <100 mesh, and the operating temperature of 35 °C, the equilibrium adsorption capacity reached 10.49 mg/g, which was greater than those of natural/synthetic iron oxides adsorbents and iron-oxide-coated adsorbents.

Keyword : fixed-bed column adsorption, arsenic (V), biomorph-genetic adsorbent, iron oxide, carbon, eucalyptus wood microstructure

How to Cite
Li, Y., Zhu, Y., Zhu, Z., Zhang, X., Wang, D., & Xie, L. (2018). Fixed-bed column adsorption of arsenic(V) by porous composite of magnetite/hematite/carbon with eucalyptus wood microstructure. Journal of Environmental Engineering and Landscape Management, 26(1), 38-56. https://doi.org/10.3846/16486897.2017.1346513
Published in Issue
Mar 20, 2018
Abstract Views
3005
PDF Downloads
965
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Acosta, J. A.; Arocena, J. M.; Faz, A. 2015. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia, Chemosphere 138: 1014–1020. https://doi.org/10.1016/j.chemosphere.2014.12.050

Aksu, Z.; Gönen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochemistry 39(5): 599–613. https://doi.org/10.1016/S0032-9592(03)00132-8

Aredes, S.; Klein, B.; Pawlik, M. 2012. The removal of arsenic from water using natural iron oxide minerals, Journal of Cleaner Production 29–30: 208–213. https://doi.org/10.1016/j.jclepro.2012.01.029

Auta, M.; Amat Darbis, N. D.; Mohd Din, A. T.; Hameed, B. H. 2013. Fixed-bed column adsorption of carbon dioxide by sodium hydroxide modified activated alumina, Chemical Engineering Journal 233: 80–87. https://doi.org/10.1016/j.cej.2013.08.012

Banerji, T.; Chaudhari, S. 2016. Arsenic removal from drinking water by electrocoagulation using iron electrodes- an understanding of the process parameters, Journal of Environmental Chemical Engineering 4(4): 3990–4000. https://doi.org/10.1016/j.jece.2016.09.007

Chen, N.; Zhang, Z.; Feng, C.; Li, M.; Chen, R.; Sugiura, N. 2011. Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud, Desalination 268(1–3): 76–82. https://doi.org/10.1016/j.desal.2010.09.053

Ghosh, A.; Chakrabarti, S.; Ghosh, U. C. 2014. Fixed-bed column performance of Mn-incorporated iron(III) oxide nanoparticle agglomerates on As(III) removal from the spiked groundwater in lab bench scale, Chemical Engineering Journal 248: 18–26. https://doi.org/10.1016/j.cej.2014.03.010

Giménez, J.; Martínez, M.; de Pablo, J.; Rovira, M.; Duro, L. 2007. Arsenic adsorption onto natural hematite, magnetite, and goethite, Journal of Hazardous Materials 141(3): 575–580. https://doi.org/10.1016/j.jhazmat.2006.07.020

Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V. K. 2005. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, Journal of Hazardous Materials 125(1–3): 211–220. https://doi.org/10.1016/j.jhazmat.2005.05.032

Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. 2014. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure, Journal of Hazardous Materials 276: 339–345. https://doi.org/10.1016/j.jhazmat.2014.05.025

Habuda-Stanić, M.; Kalajdžić, B.; Kuleš, M.; Velić, N. 2008. Arsenite and arsenateadsorption by hydrousferric oxide/polymeric material, Desalination 229(1–3): 1–9. https://doi.org/10.1016/j.desal.2007.06.034

Han, R.; Wang, Y.; Zou, W.; Wang, Y.; Shi, J. 2007. Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column, Journal of Hazardous Materials 145(1–2): 331–335. https://doi.org/10.1016/j.jhazmat.2006.12.027

Hu, X.; Ding, Z.; Zimmerman, A. R.; Wang, S.; Gao, B. 2015. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis, Water Research 68: 206–216. https://doi.org/10.1016/j.watres.2014.10.009

Lata, S.; Samadder, S. R. 2016. Removal of arsenic from water using nano adsorbents and challenges: A review, Journal of Environmental Management 166: 387–406. https://doi.org/10.1016/j.jenvman.2015.10.039

Lim, A. P.; Aris, A. Z. 2014. Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons, Biochemical Engineering Journal 87(12): 50–61. https://doi.org/10.1016/j.bej.2014.03.019

Luther, S.; Borgfeld, N.; Kim, J.; Parsons, J. G. 2012. Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials, Microchemical Journal 101: 30–36. https://doi.org/10.1016/j.microc.2011.10.001

Mamindy-Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. 2011. Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility, Desalination 281(20): 93–99. https://doi.org/10.1016/j.desal.2011.07.046

Mishra, T.; Mahato, D. K. 2016. A comparative study on enhanced arsenic(V) and arsenic(III) removal by iron oxide and manganese oxide pillared clays from ground water, Journal of Environmental Chemical Engineering 4(1): 1224–1230. https://doi.org/10.1016/j.jece.2016.01.022

Mohan, D.; Pittman, C. U. 2007. Arsenic removal from water/wastewater using adsorbents – A critical review, Journal of Hazardous Materials 142(1–2): 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006

Nwabanne, J. T.; Igbokwe, P. K. 2012. Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre, International Journal of Applied Science and Technology 2(5): 106–115.

Parsons, G. J.; Lopez, L. M.; Peralta-Videa, R. J.; Gardea-Torresdey, L. J. 2009. Determination of arsenic (III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents, Microchemical Journal 91(1): 100–106. https://doi.org/10.1016/j.microc.2008.08.012

Podder, M. S.; Majumder, C. B. 2016. Fixed-bed column study for As(III) and As(V) removal and recovery by bacterial cells immobilized on sawdust/MnFe2O4 composite, Biochemical Engineering Journal 105(2016) 114–135. https://doi.org/10.1016/j.bej.2015.09.008

Presas, J. M.; Pastor, Y.; Llorca, J.; Arellano-López, A. R.; Martínez-Fernández, J.; Sepúlveda, R. 2006. Microstructure and fracture properties of biomorphic SiC, International Journal of Refractory Metals and Hard Materials 24(1–2): 49–54. https://doi.org/10.1016/j.ijrmhm.2005.07.003

Sabbatini, P.; Rossi, F.; Thern, G.; Marajofsky, A.; de Cortalezzi, M. M. F. 2009. Iron oxide adsorbers for arsenic removal: a low cost treatment for rural areas and mobile applications, Desalination 248(1–3): 184–192. https://doi.org/10.1016/j.desal.2008.05.104

Sarı, A.; Çıtak, D.; Tuzen, M. 2010. Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite, Chemical Engineering Journal 162(2): 521–527. https://doi.org/10.1016/j.cej.2010.05.054

Sieber, H. 2005. Biomimetic synthesis of ceramics and ceramic composites, Materials Science and Engineering A 412(1): 43–47. https://doi.org/10.1016/j.msea.2005.08.062

Singh, D. B.; Prasad, G.; Rupainwar, D. C. 1996. Adsorption technique for the treatment of As(V)-rich effluents, Colloids and Surfaces A: Physicochemical and Engineering Aspects 111(1–2): 49–56. https://doi.org/10.1016/0927-7757(95)03468-4

Sinha, S.; Amy, G.; Yoon, Y.; Her, N. 2011. Arsenic removal from water using various adsorbents: magnetic ion exchange resins, hydrous ion oxide particles, granular ferric hydroxide, activated alumina, sulfur modified iron, and iron oxide-coated microsand, Environmental Engineering Research 16(3): 165–173. https://doi.org/10.4491/eer.2011.16.3.165

Smedley, P. L.; Kinniburg, D. G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry 17(5): 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

Smith, A. E.; Lincoln, R. A.; Paulu, C.; Simones, T. L.; Caldwell, K. L.; Jones, R. L.; Backer, L. C. 2015. Assessing arsenic exposure in households using bottled water or point-of-use treatment systems to mitigate well water contamination, Science of The Total Environment 544: 701–710. https://doi.org/10.1016/j.scitotenv.2015.11.136

Targan, Ş.; Tirtom, V. N.; Akkuş, B. 2013. Removal of antimony(III) from aqueous solution by using grey and red Erzurum clay and application to the Gediz river sample, ISRN Analytical Chemistry, Article ID 962781. https://doi.org/10.1155/2013/962781

Türk, T.; Alp, İ. 2014. Arsenic removal from aqueous solutions with Fe-hydrotalcite supported magnetite nanoparticle, Journal of Industrial and Engineering Chemistry 20(2): 732–738. https://doi.org/10.1016/j.jiec.2013.06.002

Vitela-Rodriguez, A. V.; Rangel-Mendez, J. R. 2013. Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles, Journal of Environmental Management 114: 225–231. https://doi.org/10.1016/j.jenvman.2012.10.004

Wei, W.; Zhu, Z.; Zhu, Y.; Qin, H.; Liang, M. 2013. Adsorption of Sb(III) from aqueous solution by the porous biomorph-genetic composite of Fe2O3-Fe3O4/C prepared with eucalyptus wood template, Technology of Water Treatment 39(5): 69–72 (in Chinese).

WHO. 2016. Arsenic [online], [cited 30 September 2016]. World Health Organization. Available from Internet: http://www.who.int/mediacentre/factsheets/fs372/en

Xu, X.; Gao, B.; Tan, X.; Zhang, X.; Yue, Q.; Wang, Y.; Li, Q. 2013. Nitrate adsorption by stratified wheat straw resin in lab-scale columns, Chemical Engineering Journal 226: 1–6. https://doi.org/10.1016/j.cej.2013.04.033

Yean, S.; Cong, L.; Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Kan, A. T.; Colvin, V. L.; Tomson, M. B. 2005. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate, Journal of Materials Research 20(12): 3255–3264. https://doi.org/10.1557/jmr.2005.0403

Yu, T.; Zeng, C.; Ye, M.; Shao, Y. 2013. The adsorption of Sb(III) in aqueous solution by Fe2O3-modified carbon nanotubes, Water Science and Technology 68(3): 658–664. https://doi.org/10.2166/wst.2013.290

Zhu, Y.; Zhu, Z.; Chen, Y.; Yang, F.; Qin, H.; Xie, L. 2013. Kinetics and thermodynamics of sorption for As(V) on the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood hierarchical microstructure, Water, Air & Soil Pollution 224: Article Number 1589. https://doi.org/10.1007/s11270-013-1589-y

Zhu, Z. Q.; Zhu, Y. N.; Qin, H.; Li, Y. H.; Liang, Y. P.; Deng, H.; Liu, H. L. 2015. Preparation and properties of porous composite of hematite/magnetite/carbon with eucalyptus wood biotemplate, Materials and Manufacturing Processes 30(3): 285–291. https://doi.org/10.1080/10426914.2014.941478