Share:


Evaluation of water permeability in compacted sand-bentonite liners from landfill using planning and factorial analysis

Abstract

Compacted Clay Liners (CCL) are designed to prevent environmental contamination in landfills. These layers are designed with low permeability soils, which are difficult to obtain. To this end, bentonite can be added. The objective of this work is to evaluate the reliability of factor analysis on the hydraulic performance of sand-bentonite mixtures. Two types of designs were used, with the variables controlled: compaction energy (CE), water content (U) and percentage of bentonite (B). Experimental layers were made to obtain water permeability (kw). The results showed that CE and B are, respectively, the factors that most influence permeability. The application of adequate energy promotes better accommodation of bentonite soil particles in the voids in the sand, which, when moistened, undergo an expansion process, reducing the voids in the layer. All of these parameters can be optimized by using a curvature design to obtain kW. Therefore, knowledge of CCL kw is essential to ensure the safety of the local environmental environment.

Keyword : landfill, compacted clay liner, water permeability, bentonite, factorial analysis, response surface

How to Cite
Silva, T. F. da, Lyra, M. V. M. de, Silva, I. F. da, Paiva, W. de, Melo, M. C. de, & Monteiro, V. E. D. (2024). Evaluation of water permeability in compacted sand-bentonite liners from landfill using planning and factorial analysis. Journal of Environmental Engineering and Landscape Management, 32(3), 182–190. https://doi.org/10.3846/jeelm.2024.21830
Published in Issue
Jul 25, 2024
Abstract Views
376
PDF Downloads
288
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Amadi, A., & Odedede, O. (2019). Attenuation of contaminants in landfill leachate by lateritic soil enhanced with bentonite. Geomechanics and Geoengineering, 14(6), 348–358. https://doi.org/10.1080/17486025.2019.1670872

Arifin, Y. F., & Sambelum. (2019). Bentonite enhanced soil as an alternative landfill liner in Rikut Jawu, South Barito. IOP Conference Series: Earth and Environmental Science, 239(1), Article 012003. https://doi.org/10.1088/1755-1315/239/1/012003

Azam, S. (2003). Influence of mineralogy on swelling and consolidation of soils in eastern Saudi Arabia. Canadian Geotechnical Journal, 40(5), 964–975. https://doi.org/10.1139/t03-047

Brazilian Association of Technical Standards. (1997). NBR 13.896: Non-hazardous waste landfills – Criteria for design, implementation and operation. Rio de Janeiro.

Brazilian Association of Technical Standards. (2000). NBR 14545: Soil – Determination of the permeability coefficient of clayey soils at variable load. Rio de Janeiro.

Bressan Jr, J. C., Zampieri, L. Q., Nienov, F. A., Luvizão, G., & Pedroso, M. J. (2022). Evaluating hydraulic conductivity of soil-waste mixtures for use in sanitary landfill waterproof barriers. Built Environment, 22(4), 77–90. https://doi.org/10.1590/s1678-86212022000400629

Camapum, J. C. [orgs]. (2015). Unsaturated soils in the geotechnical context. Brazilian Association of Soil Mechanics.

Daniel, D. E. (1993). Geotechnical practice for waste disposal. Chapmann & Hall. https://doi.org/10.1007/978-1-4615-3070-1

Daniel, D. E., & Benson, C. H. (1990). Water content-density criteria for compacted soil liners. Journal of Geotechnical Engineering, 116(12), 1811–1830. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1811)

Daniel, D. E., & Wu, Y. K. (1993). Compacted clay liners and cover for arid sites. Journal of Geotechnical Engineering, 119(2), 223–237. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(223)

Das, B. M. (2010). Principles of geotechnical engineering (7 ed.). Cengage Learning.

Falamaki, A., Eskandari, M., & Homaee, M. (2018). An improved multilayer compacted clay liner by adding bentonite and phosphate compound to sandy soil. KSCE Journal of Civil Engineering, 22, 3852–3859. https://doi.org/10.1007/s12205-018-1554-9

Fattah, M. Y., Salim, N. M., & Irshayvid, E. J. (2016). Experimental study on compressibility, volume changes, strength and permeability characteristics of unsaturated bentonite-sand mixtures. Engineering and Technology Journal, 34(7), 1308–1323. https://doi.org/10.30684/etj.34.7A.5

Fattah, M. Y., Salim, N. M., & Irshayvid, E. J. (2017). Determination of the soil–water characteristic curve of unsaturated bentonite–sand mixtures. Environmental Earth Sciences, 76, Article 201, https://doi.org/10.1007/s12665-017-6511-2

Fattah, M. Y., Salim, N. M., & Irshayvid, E. J. (2022). Influence of soil suction on swelling pressure of bentonite-sand mixtures. European Journal of Environmental and Civil Engineering, 26(7), 2554–2568. https://doi.org/10.1080/19648189.2017.1320236

Fu, X. L., Zhang, R., Reddy, K. R., Li, Y. C., Yang, Y. L., & Du, Y. J. (2021). Membrane behavior and diffusion properties of sand/SHMP-amended bentonite vertical cutoff wall backfill exposed to lead contamination. Engineering Geology, 284, 1–16. https://doi.org/10.1016/j.enggeo.2021.106037

Gleason, M. H., Daniel, D. E., & Eykholt, G. R. (1997). Calcium and sodium bentonite for hydraulic containment applications. Journal of Geotechnical Engineering, 123(5), 438–445. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(438)

Gonçalves, R. H., & Sturaro, J. R. (2010). Application of the response surface methodology in the remediation of a sandy soil artificially contaminated with copper. Geociências, 29(1), 59–70.

Gupt, C. B., Bordoloi, S., Sekharan, S., & Sarmah, A. K. (2020). A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner. Environmental Pollution, 265, Article 114811. https://doi.org/10.1016/j.envpol.2020.114811

Kang, J. B., & Shackelford, C. D. (2010). Membrane behavior of compacted clay liners. Journal of Geotechnical and Geoenvironmental Engineering, 136(10), 1368–1382. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000358

Kenney, T. C., Van Veen, W. A., Swallow, M. A., & Sungaila, M. A. (1992). Hydraulic conductivity of compacted bentonite-sand mixtures. Canadian Geotechinical Journal, 29, 364–374. https://doi.org/10.1139/t92-042

Meier, A. J., & Shackelford, C. D. (2017). Membrane behavior of compacted sand-bentonite mixture. Canadian Geotechnical Journal, 54(9), 1284–1299. https://doi.org/10.1139/cgj-2016-0708

Middelhoff, M., Cuisinier, O., Masrouri, F., Talandier, J., & Conil, N. (2020). Combined impact of selected material properties and environmental conditions on the swelling pressure of compacted claystone/bentonite mixtures. Applied Clay Science, 184, 1–10. https://doi.org/10.1016/j.clay.2019.105389

Mohammed, Z. B., Fattah, M. Y., & Shehab, E. Q. (2024). Effect of leachate contamination in municipal solid waste on clay liner characteristics. Journal of Engineering Research, 12(2), 34–43. https://doi.org/10.1016/j.jer.2023.10.025

Montgomery, D. C. (2009). Design and analysis of experiments. John Wiley & Sons.

Morandini, T. L. C., & Leite, A. L. (2015). Characterization and hydraulic conductivity of tropical soils and bentonite mixtures for CCL purposes. Engineering Geology, 196, 251–267. https://doi.org/10.1016/j.enggeo.2015.07.011

Murray, E. J., Jones, R. H., & Rix, D. W. (1997). Relative importance of factors influencing the permeability of clay soils. Geoenvironmental Engineering, 229–239.

Nasir, O., Nguyen, T. S., Barnichon, J. D., & Millard, A. (2017). Simulation of hydromechanical behavior of bentonite seals for containment of radioactive wastes. Canadian Geotechnical Journal, 54(8), 1055–1070. https://doi.org/10.1139/cgj-2016-0102

Najjar, Y. M., & Basheer, I. A. (1996). Utilizing computational neural networks for evaluating the permeability of compacted clay liners. Geotechnical and Geological Engineering, 14, 193–212. https://doi.org/10.1007/BF00452947

Rashid, H. M. A., Sardar, A., & Ismail, A. (2021). Geotechnical characterization of bentonite-fly ash mixtures for their application as landfill liner in Pakistan. Arabian Journal of Geosciences, 14, Article 1307. https://doi.org/10.1007/s12517-021-07663-6

Raychaudhuri, A., & Behera, M. (2020). Review of the process optimization in microbial fuel cell using design of experiment methodology. Journal of Hazardous, Toxic, and Radioactive Waste, 24(3). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000503

Rodrigues, M. I., & Iemma, A. F. (2009). Design of experiments and process optimization (2nd ed.). House of the Spirit Friend Fraternity Faith and Love.

Salerno, D., Jordan, H., La Marca, F., & Carvalho, M. T. (2018). Using factorial experimental design to evaluate the separation of plastics by froth flotation. Waste Management, 73, 62–68. https://doi.org/10.1016/j.wasman.2017.12.001

Silva, T. F., Santos, J. J. N., Souza, J. C. M., Araujo, P. S., & Paiva, W. (2022). Estimation of unsaturated permeability in a sanitary landfill cover layer in the Brazilian semiarid region. Sanitary and Environmental Engineering, 27(5), 1049–1057. https://doi.org/10.1590/S1413-415220220108

Stewart, D. I., Studds, P. G., & Cousens, T. W. (2003). The factors controlling the engineering properties of bentonite-enhanced sand. Applied Clay Science, 23, 97–110. https://doi.org/10.1016/S0169-1317(03)00092-9

United States Environmental Protection Agency. (1993). Solid waste disposal facility criteria technical manual. Washington DC.

Watabe, Y., Yamada, K., Saitoh, K., & Millard, A. (2011). Hydraulic conductivity and compressibility of mixtures of Nagoya clay with sand or bentonite. Geotechnique, 61(3), 211–219. https://doi.org/10.1680/geot.8.P.087

Wu, H., Wen, Q., Hu, L., Gong, M., & Tang, Z. (2017). Feasibility study on the application of coal gang as landfill liner material. Waste Management, 63, 161–171. https://doi.org/10.1016/j.wasman.2017.01.016

Yeo, S. S., Shackelford, C. D., & Evans, J. C. (2005). Membrane behavior of model soil–bentonite backfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 418–429. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(418)