Share:


Impact of LULUCF accounting rules for climate change mitigation goals: winning or losing?

    Vaiva Kazanavičiūtė Affiliation
    ; Renata Dagiliūtė Affiliation

Abstract

Land use, land-use change, and forestry (LULUCF) sector plays an important role in climate change mitigation as long-term goal of carbon neutral economy depends on sector’s ability to sequestrate carbon in biomass and soil. With reference to the Paris Agreement, accounting rules for LULUCF sector have been heavily discussed in European Union (EU), seeking of trustworthy inclusion of the sector in the assessment of Union’s greenhouse gas (GHG) emission reduction target. Therefore, the paper aims to analyze LULUCF sector’s contribution to climate change mitigation with different accounting rules applied in EU countries and particularly in Lithuania. On EU level LULUCF sector’s absorption in 2019 has equaled around –234 million t CO2 eq. (6% of total EU GHG emissions), in some countries reaching more than a half of national emissions. However, different accounting rules applied may provide significantly different number of potential credits for separate EU countries, creating some “winners” and “losers” situation. Though inclusion of LULUCF sector into GHG’s emissions reduction targets remains discussible, some stability in rules is one of the main preconditions for proper LULUCF sector management decisions.

Keyword : land-use change and forestry, GHG accounting, emissions, removals, climate change mitigation, environmental policy

How to Cite
Kazanavičiūtė, V., & Dagiliūtė, R. (2023). Impact of LULUCF accounting rules for climate change mitigation goals: winning or losing?. Journal of Environmental Engineering and Landscape Management, 31(3), 164–175. https://doi.org/10.3846/jeelm.2023.19466
Published in Issue
Aug 2, 2023
Abstract Views
611
PDF Downloads
542
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aho, H. (2018). The EU’s new LULUCF regulation: Is it fit for (climate) purpose? https://fern.org/LULUCFRegulationResult

Berglund, H., & Kuuluvainen, T. (2021). Representative boreal forest habitats in northern Europe, and a revised model for ecosystem management and biodiversity conservation. Ambio, 50, 1003–1017. https://doi.org/10.1007/s13280-020-01444-3

Böttcher, H., & Graichen, J. (2015). Impacts on the EU 2030 climate target of including LULUCF in the climate and energy policy framework (Report). Öko-Institut e.V., Berlin.

Ceccherini, G., Duveiller, G., Grassi, G., Lemoine, G., Avitabile, V., Pilli, R., & Cescatti, A. (2020). Abrupt increase in harvested forest area over Europe after 2015. Nature, 583, 72–77. https://doi.org/10.1038/s41586-020-2438-y

Diao, J., Liu, J., Zhu, Z., Wei, X., & Li, M. (2022). Active forest management accelerates carbon storage in plantation forests in Lishui, southern China. Forest Ecosystems, 9, 100004. https://doi.org/10.1016/j.fecs.2022.100004

Dooley, K. (2014). Misleading numbers the case for separating land and fossil based carbon emissions. FERN.

Ellison, D., Lundblad, M., & Petersson, H. (2014). Reforming the EU approach to LULUCF and the climate policy framework. Environment Science and Policy, 40, 1–15. https://doi.org/10.1016/j.envsci.2014.03.004

European Commission. (2016). Proposal on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry into the 2030 climate and energy framework and amending Regulation No 525/2013 of the European Parliament and the Council on a mechanism for monitoring and reporting greenhouse gas emissions and other information relevant to climate change (COM/2016/0479 final). Brussels.

European Commission. (2021). EU Reference Scenario 2020. Energy, transport and GHG emissions - Trends to 2050. Publications Office of the European Union.

European Parliament and Council. (2018a). Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0841

European Parliament and Council. (2018b). Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) 525/2013. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018R0842

European Parliament and Council. (2021). Proposal for a Regulation of the European Parliament and of the Council amending Regulations (EU) 2018/841 as regards the scope simplifying the compliance rules, setting out the targets of the Member States for 2030 and committing to the collective achievement of climate neutrality by 2035 in the land use, forestry and agriculture sector, and (EU) 2018/1999 as regards improvements in monitoring, reporting, tracking of progress and review. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0554

Eurostat. (2017). Forests soak up to 10% of greenhouse gas emissions in the EU. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20170320-1?inheritRedirect=true

Frank, S., Bottcher, H., Gusti, M., Havlik, P., Klaasen, G., Kindermann, G., & Obersteiner, M. (2016). Dynamics of the land use, land-use change and forestry sink in the European Union: The impacts of energy and climate targets for 2030. Journal of Climatic Change, 138, 253–266. https://doi.org/10.1007/s10584-016-1729-7

Galka, B., Labaz, B., Bogacz, A., Bojko, O., & Kabala, C. (2013). Conversion of Norway spruce forests will reduce organic carbon pools in the mountain soils of SW Poland. Geoderma, 213, 287–295. https://doi.org/10.1016/j.geoderma.2013.08.029

Grassi, G., Elzen, M. G. J., Hof, A. F., Pilli, R., & Federici, S. (2012). The role of the land use, land-use change and forestry sector in achieving Annex I reduction pledges. Journal of Climatic Change, 115(3–4), 873–881. https://doi.org/10.1007/s10584-012-0584-4

Grassi, G., House, J., Kurz, W. A., Cescatti, A., Houghton, R. A., Peters, G. P., Sanz, M. J., Abad Viñas, R., Alkama, R., Arneth, A., Bondeau, A., Dentener, F., Fader, M., Federici, S., Friedlingstein, P., Jain, A. K., Kato, E., Koven, C. D., Lee, D., … Zaehle, S. (2018a). Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 8, 914–920. https://doi.org/10.1038/s41558-018-0283-x

Grassi, G., Pilli, R., House, J., Federici, S., & Kurz, W. A. (2018b). Science-based approach for credible accounting of mitigation in managed forests. Carbon Balance and Management, 13, 8. https://doi.org/10.1186/s13021-018-0096-2

Gundersen, P., Thybring, E. E., Nord-Larsen, T., Vesterdal, L., Nadelhoffer, K. J., & Johannsen, V. K. (2021). Old-growth forest carbon sinks overestimated. Nature, 591, E21–E23. https://doi.org/10.1038/s41586-021-03266-z

Gurmesa, G. A., Schmidt, I. K., Gundersen, P., & Vesterdal, L. (2013). Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens. Forest Ecology and Management, 309, 47–57. https://doi.org/10.1016/j.foreco.2013.02.015

Hermans, R., McKenzie, R., Andersen, R., Teh, Y. A., Cowie, N., & Subke, J. A. (2022). Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes. Biogeosciences, 19, 313–327. https://doi.org/10.5194/bg-19-313-2022

Jasinevičius, G., Lindner, M., Verkerk, P. J., & Aleinikovas, M. (2017). Assessing impacts of wood utilisation scenarios for a Lithuanian bioeconomy: Impacts of carbon in forests and harvested wood products and on the socio-economic performance of the forest based sector. Forests, 8, 133. https://doi.org/10.3390/f8040133

Jonard, M., Nicolas, M., Coomes, D. A., Caignet, I., Saenger, A., & Ponette, Q. (2017). Forest soils in France are sequestering substantial amounts of carbon. Science of the Total Environment, 574, 616–628. https://doi.org/10.1016/j.scitotenv.2016.09.028

Ķēniņa, L., Elferts, D., Jaunslaviete, I., Bāders, E., & Jansons, Ā. (2023). Sustaining carbon storage: Lessons from hemiboreal old-growth coniferous and deciduous forest stands. Forest Science, 69(2), 158–166. https://doi.org/10.1093/forsci/fxac055

Krug, J. H. A. (2018). Accounting of GHG emissions and removals from forest management: A long road from Kyoto to Paris. Carbon Balance and Management, 13, 1. https://doi.org/10.1186/s13021-017-0089-6

Liobikienė, G., & Dagiliūtė, R. (2016). The relationship between economic and carbon footprint changes in EU: The achievements of the EU sustainable consumption and production policy implementation. Environmental Science & Policy, 61, 204–211. https://doi.org/10.1016/j.envsci.2016.04.017

Liu, S., Li, Y., Gao, Q., Wan, Y., Ma, X., & Qin, X. (2011). Analysis of LULUCF accounting rules after 2012. Advances in Climate Change Research, 2(4), 178–186. https://doi.org/10.3724/SP.J.1248.2011.00178

Luyssaert, S., Detlef Schulze, E., Borner, A., Knohl, A., Hessenmoller, D., Law, B. E., Ciais, P., & Grace, J. (2008). Old-growth forests as global carbon sinks. Nature, 455, 213–215. https://doi.org/10.1038/nature07276

Luyssaert, S., Schulze, E. D., Knohl, A., Law, B. E., Ciais, P., & Grace, J. (2021). Reply to: Old-growth forest carbon sinks overestimated. Nature, 591, E24–E25. https://doi.org/10.1038/s41586-021-03267-y

Macintosh, A. K. (2011). Are forest management reference levels incompatible with robust climate outcomes? A case study on Australia. Journal of Carbon Management, 2(6), 691–707.

McGlynn, E., Li, S., Berger, M. F., Amend, M., & Harper, K. L. (2022). Addressing uncertainty and bias in land use, land use change, and forestry greenhouse gas inventories. Climatic Change, 170, 5. https://doi.org/10.1007/s10584-021-03254-2

Ministry of Environment. (2018). Statement on Lithuania’s EU commitments to reduce greenhouse gas (GHG) emissions and challenges for sectoral ministries. Vilnius (in Lithuanian).

Nabuurs, G. J., Arets, E. J. M. M., & Schelhaas, M. J. (2018). Understanding the implications of the EU-LULUCF regulation for the wood supply from EU forests to the EU. Carbon Balance and Management, 13, 18. https://doi.org/10.1186/s13021-018-0107-3

National Climate Change Management Agenda. (2021). Decision of the Seimas of the Republic of Lithuania. Vilnius (in Lithuanian).

Päivinen, R., Kallio, A. M. I., Solberg, B., & Käär, L. (2022). EU Forest reference levels: The compatible harvest volumes compiled and assessed in terms of forest sector market development. Forest Policy and Economics, 140, 102748. https://doi.org/10.1016/j.forpol.2022.102748

Palahí, M., Valbuena, R., Senf, C., Acil, N., Pugh, T. A. M., Sadler, J., Seidl, R., Potapov, P., Gardiner, B., Hetemäki, L., Chirici, G., Francini, S., Hlásny, T., Lerink, B. J. W., Olsson, H., González Olabarria, J. R., Ascoli, D., Asikainen, A., Bauhus, J., … Nabuurs, G.-J. (2021). Concerns about reported harvests in European forests. Nature, 592, E15–E17. https://doi.org/10.1038/s41586-021-03292-x

Schlamadinger, B., Bird, N., Johns, T., Brown, S., Canadell, J., Ciccarese, L., Dutschke, M., Fiedler, J., Fischlin, A., Fearnside, P., Forner, C., Freibauer, A., Frumhoff, P., Hoehne, N., Kirschbaum, M. U. F., Labat, A., Marland, G., Michaelowa, A., Montanarelly, L., … Mudiyarso, D. (2007). A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. Environment Science and Policy, 10, 271–282.

Tubiello, F. N., Salvatore, M., Cóndor Golec, R. D., Ferrara, A., Rossi, S., Biancalani, R., Federici, S., Jacobs, H., Flammini, A., Sanz Sanchez, M. J., Smith, P., House, J., & Srivastava, N. (2015). The contribution of agriculture, forestry and other land use activities to global warming, 1990-2010: Not as high as in the past. Global Change Biology, 21, 2655–2660.

United Nations Climate Change. (2021). Lithuania’s national inventory report. https://unfccc.int/documents/273465

United Nations Framework Convention on Climate Change. (2005a). The Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol (Decision 17/CMP.1: Good practice guidance for land use, land-use change and forestry activities under Article 3, paragraphs 3 and 4, of the Kyoto). https://unfccc.int/resource/docs/2005/cmp1/eng/08a03.pdf#page=10

United Nations Framework Convention on Climate Change. (2005b). The Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol (Decision 15/CMP.1: Guidelines for the preparation of the information required under Article 7 of the Kyoto Protocol). https://unfccc.int/resource/docs/2005/cmp1/eng/08a02.pdf#page=54

United Nations Framework Convention on Climate Change. (2012). The Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol (Decision 1/CMP.8: Amendment to the Kyoto Protocol pursuant to its Article 3, paragraph 9 (the Doha Amendment)). https://unfccc.int/resource/docs/2012/cmp8/eng/13a01.pdf

Vizzarri, M., Pilli, R., Korosuo, A., Blujdea, V. N. B., Rossi, S., Fiorese, G., Abad-Viñas, R., Colditz, R. R., & Grassi, G. (2021). Setting the forest reference levels in the European Union: Overview and challenges. Carbon Balance Management, 16(1), 23.

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., … Zuidema, P. A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229, 2413–2445.

Wernick, I. K., Ciais, P., Fridman, J. Högberg, P., Korhonen, K. T., Nordin, A., & Kauppi, P. E. (2021). Quantifying forest change in the European Union. Nature, 592, E13–E14. https://doi.org/10.1038/s41586-021-03293-w

Yu, J., Berry, P., Guillod, B. P., & Hickler, T. (2021). Climate change impacts on the future of forests in Great Britain. Frontiers in Environmental Science, 9, 640530. https://doi.org/10.3389/fenvs.2021.640530