Share:


The influence of fine fractions content in non-cohesive soils on their compactibility and the CBR value

    Aleksandra Bąk   Affiliation
    ; Ryszard Chmielewski   Affiliation

Abstract

The bearing capacity of subsoils is particularly important due to the intensive development of road and airfield pavements. Subgrade is classified due to frost susceptibility as non-frost-susceptible, low-frost-susceptible or frost-susceptible. Presented research included laboratory tests of low-frost-susceptible soils with limited potential for direct use. The main objective of this paper was focused on the study of changes of compactibility parameters and the CBR (Californian Bearing Ratio) values of silty sand (Pπ). For this purpose, seventeen soil samples with various fine fractions content (of 1.6% to 24.2%), were composed. Laboratory tests, based on soaked soil samples, encompassed the Proctor Compaction test and the CBR test. Additionally, measurements of moisture content in soaked soil samples before and after the penetration test and the displacement of annular surcharge rings while penetration test, were performed. Obtained results allowed for conclusions that penetration curves diverge from the standard curve locally, therefore direct reading of the CBR values from the penetration curves may lead to its significant overstatement. There was also noticed the dependence between the water flow in the soil and the fine fraction content. The research recognized the need for pressure measurement in soil samples during the penetration test.

Keyword : non-cohesive soil, fine fraction, optimum moisture content (OMC), maximum dry density (MDD), CBR test, soaked soil, compactibility parameters, subgrade, frost susceptibility

How to Cite
Bąk, A., & Chmielewski, R. (2019). The influence of fine fractions content in non-cohesive soils on their compactibility and the CBR value. Journal of Civil Engineering and Management, 25(4), 353-361. https://doi.org/10.3846/jcem.2019.9687
Published in Issue
Apr 8, 2019
Abstract Views
1256
PDF Downloads
693
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

ASTM International. (2007). Designation D1883-07, Standard test method for CBR (California bearing ratio) of laboratory-compacted soils.

Bednarek, Ł., & Mazurek, J. (2011). Ocena wpływu domieszek do kruszywa 0 – 63 mm na poprawę jego wskaźników nośności na podstawie wyników badań własnych. Górnictwo i Geoinżynieria, 35(2), 89-94 (in Polish).

Cabalar, A. F., & Mustafa, W. S. (2017). Behaviour of sand – clay mixtures for road pavement subgrade. International Journal of Pavement Engineering, 18(8), 714-726. https://doi.org/10.1080/10298436.2015.1121782

Chmielewski, R., & Waliszewski, D. (2016). Wpływ ciężaru warstw konstrukcyjnych nawierzchni na wartość wskaźnika nośności CBR. Acta Scientarium Polonorum. Architektura, 15(2), 45-54 (in Polish).

Fattah, M. Y., Joni, H. H., & Al-Dulaimy, A. S. A. (2016). Compaction and collapse characteristics of dune sand stabilized with lime – silica fume mix. Earth Sciences Research Journal, 20(2), I1-I8. https://doi.org/10.15446/esrj.v20n2.50724

Gadzama, E. W., Yohanna, P., Wadai, I. D., Nwaiwu, C., & Malachy, O. (2018). Evaluation of compaction properties of some semi – arid zone soils. Leonardo Electronic Journal of Practices and Technologies, 17(32), 149-172.

Generalny Dyrektor Dróg Krajowych. (2014). Załącznik do zarządzenia nr 31. Katalog typowych konstrukcji nawierzchni podatnych oraz półsztywnych (in Polish).

Gonzalez, C., Barker, W., & Bianchini, A. (2012). Reformulation of the CBR procedure. US Army Corps of Engineers.

Gupta, R. C., & Thomas, B. S. (2013). A study on the optimum moisture content and maximum dry density of sandy and clayey soil stabilized by copper tailings. RCEE Research in Civil and Environmental Engineering, 1, 123-138.

Habasimibi, P., & Nishimura, T. (2018). Comparison of soil-water characteristic curves in one-dimensional and isotropic stress conditions. Soil Systems, 2(3), 43. https://doi.org/10.3390/soilsystems2030053

Hossain, A., Islam, S., & Rakib, A. A. (2016). Use of coal mine dust as an improved subgrade material in road construction. American Journal of Environmental and Resource Economics, 1(1), 9-23.

Katte, V. Y., Mfoyet, S. M., Manefouet, B., Wouatong, A. S. L., & Bezeng, L. A. (2019). Correlation of California bearing ratio (CBR) value with soil properties of road subgrade soil. Geotechnical and Geological Engineering, 37(1), 217-234. https://doi.org/10.1007/s10706-018-0604-x

Khillare, P. S., Damgir, R. M., & Hake, S. L. (2016). CBR determination on subgrade soil by replacement of additives. International Journal of New Innovations in Engineering and Technology, 6(1), 49-54.

Kodikara, J., Islam, T., & Sountharajah, A. (2018). Review of soil compaction: History and recent developments. Transportation Geotechnics, 17, 24-34. https://doi.org/10.1016/j.trgeo.2018.09.006

Matsumura, S., & Tatsuoka, F. (2018). Effect of compaction conditions and fines content on cyclic undrained strength of saturated soils. Soil Dynamics and Earthquake Engineering, 112, 152-161. https://doi.org/10.1016/j.soildyn.2018.04.029

Osouli, A., Chaulagai, R., Tutumluer, E., & Shoup, H. (2019). Strength characteristics of crushed gravel and limestone aggregates with up to 12% plastic fines evaluated for pavement base/subbase applications. Transportation Geotechnics, 18, 25-38. https://doi.org/10.1016/j.trgeo.2018.10.004

Osouli, A., Othmanawny, G., Tutumluer, E., Beshears, S., & Shoup, H. (2018). Soaking effects on strength characteristics of crushed gravel and limestone unbound aggregates. Transportation Research Record: Journal of the Transportation
Research Board, 2672(52), 34-45. https://doi.org/10.1177/0361198118756886

Osouli, A., Salam, S., Tutumluer, E., & Shoup, H. (2017). Fines inclusion in a crushed limestone unbound aggregates base course material with 25.4-mm maximum particle size. Transportation Geotechnics, 10, 96-108. https://doi.org/10.1016/j.trgeo.2017.02.001

Pilegis, M., Gardner, D., & Lark, R. (2016). An investigation into the use of manufactured sand as a 100% replacement for fine aggregate in concrete. Materials, 9(6), 440. https://doi.org/10.3390/ma9060440

Polski Komitet Normalizacyjny. (1998). Drogi samochodowe. Roboty ziemne. Wymagania i badania (PN-S-02205:1998) (in Polish).

Polski Komitet Normalizacyjny. (2012). Mieszanki związane i niezwiązanie spoiwem hydraulicznym. Część 47: Metoda badania kalifornijskiego wskaźnika nośności, natychmiastowego wskaźnika nośności i pęcznienia liniowego (PN-EN 13286-47: 2012 (E)) (in Polish).

Polski Komitet Normalizacyjny. (2017). Mieszanki związane i niezwiązanie spoiwem hydraulicznym. Część 47: Metoda badania kalifornijskiego wskaźnika nośności, natychmiastowego wskaźnika nośności i pęcznienia liniowego (PN-EN 13286-47: 2007) (in Polish).

Roy, T. K. (2013). Influence of sand on strength characteristics of cohesive soil for using as subgrade of road. Procedia – Social and Behavioral Sciences, 104, 218-224. https://doi.org/10.1016/j.sbspro.2013.11.114

Rozporządzenie Ministra Transportu i Gospodarki Morskiej. (1999). Rozporządzenie Ministra Transportu i Gospodarki Morskiej z 2 marca 1999 r. (Dz. U. 43 poz. 430) W sprawie warunków technicznych, jakim powinny odpowiadać drogi publiczne i ich usytuowanie (in Polish).

Salam, S., Osouli, A., & Tutumluer, E. (2018). Crushed limestone aggregate strength influenced by gradation, fines content, and dust ratio. Journal of Transportation: Part B: Pavements, 144(1). https://doi.org/10.1061/JPEODX.0000032

Satyaveni, B., Sridevi, K., Sivanarayana, C., & Prasad, D. S. (2018). A study on strength characteristics of baggasse ash and phospho gypsum treated marine clay. International Journal of Civil Engineering, 5(7), 11-16. https://doi.org/10.14445/23488352/IJCE-V5I7P103

Sreelekshmypillai, G., & Vinod, P. (2017). Prediction of CBR value of fine grained soils at any rational compactive effort. International Journal of Geotechnical Engineering. https://doi.org/10.1080/19386362.2017.1374495

Sulewska, M. J., & Tymosiak, D. (2018). Analysis of compaction parameters of the exemplary non-cohesive soil determined by Proctor methods and vibrating table tests. Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation, 50(2), 99-108. https://doi.org/10.2478/sggw-2018-0008

Thakur, Y., & Yadav, R. K. (2018). Effect of bentonite clay on compaction, CBR and shear behavior of narmada sand. International Research Journal of Engineering and Technology (IRJET), 5(3), 2087-2090.

Wright, S. P., Walden, P. J., Sangha, C. M., & Langdon, N. J. (1996). Observations on soil permeability, moulding moisture content and dry density relationships. Quartely Journal of Engineering Geology, 29, 249-255. https://doi.org/10.1144/GSL.QJEGH.1996.029.P3.08

Yin, C., Zhang, W., Jiang, X., & Huang, Z. (2018). Effect of initial water content on microstructure and mechanical properties of lean clay soil stabilized by compound calcium-based stabilizer. Materials, 11(10). https://doi.org/10.3390/ma11101933

Zhemchuzhnikov, A., Ghavami, K., & Casagrande, M. (2016). Static compaction of soils with varying clay content. Key
Engineering Materials, 668, 238-246. https://doi.org/10.4028/www.scientific.net/KEM.668.238