Share:


Estimating the properties of a fine aggregate fibre reinforced cementitious composite using non-destructive methods

    Wiesława Głodkowska   Affiliation
    ; Janusz Kobaka   Affiliation

Abstract

The paper proposes a method of estimating the properties of a fine aggregate steel fibre reinforced cementitious composite using non-destructive methods. Two methods were selected to identify the properties of such a composite. One of them uses electromagnetic induction in order to estimate the content of steel fibres dispersed in the composite space, while the other is based on the determination of ultrasonic wave velocity propagating through the composite. Having defined correlations between the properties of the fibre reinforced composite and non-destructive testing parameters, regression equations were determined. Seven relationships between properties of fibre reinforced composite as the dependent variables and two independent variables, i.e.: amperage and ultrasonic wave velocity, were established. Knowing the amperage and the ultrasonic wave velocity, the basic properties of the fibre reinforced composite can be determined from the regression equations in a non-destructive manner. In order to verify the equations, three plates with different amounts of steel fibres were made in field under natural conditions, and next subjected to non-destructive tests. The tests showed good compatibility between the experimental results and those of calculations, which indicates the correctness of the formulated equations.

Keyword : fibre reinforced composite, non-destructive testing, properties, SFRC, waste sand, concrete

How to Cite
Głodkowska, W., & Kobaka, J. (2018). Estimating the properties of a fine aggregate fibre reinforced cementitious composite using non-destructive methods. Journal of Civil Engineering and Management, 24(8), 630-637. https://doi.org/10.3846/jcem.2018.6600
Published in Issue
Dec 21, 2018
Abstract Views
817
PDF Downloads
573
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Al-Harthy, A. S.; Halim, M. A.; Taha, R.; Al-Jabri, K. S. 2007. The properties of concrete made with fine dune sand, Construction and Building Materials 21(8): 1803–1808. https://doi.org/10.1016/j.conbuildmat.2006.05.053

Bae, B.-I.; Chung, J.-H.; Choi, H.-K.; Jung, H.-S.; Choi, C.-S. 2018. Experimental study on the cyclic behavior of steel fiber reinforced high strength concrete columns and evaluation of shear strength, Engineering Structures 157: 250–267. https://doi.org/10.1016/j.engstruct.2017.11.072

Balanji, E. K. Z.; Sheikh, M. N.; Hadi, M. N. S. 2017. Behaviour of high strength concrete reinforced with different types of steel fibres, Australian Journal of Structural Engineering 18(4): 254–261. https://doi.org/10.1080/13287982.2017.139687

Benoa, J.; Hilara, M. 2013. Steel fibre reinforce concrete for tunnel lining – verification by extensive laboratory testing and numerical modelling, Acta Polytechnica 53(4): 329–337.

Domski, J. 2016. A blurred border between ordinary concrete and SFRC, Construction and Building Materials 112: 247–252. https://doi.org/10.1016/j.conbuildmat.2016.02.205

Domski, J.; Głodkowska, W. 2017. Selected mechanical properties analysis of fibrous composites made on the basis of fine waste aggregate, Annual Set the Environment Protection 19: 81–95.

EN 12390-3:2009 Testing hardened concrete. Compressive strength of test specimens. European standard, 2009.

EN 12390-6:2009 Testing hardened concrete. Tensile splitting strength of test specimens. European standard, 2009.

EN 12390-7:2000 Testing hardened concrete. Density of hardened concrete. European standard, 2000.

Gholamhoseini, A.; Khanlou, A.; MacRae, G.; Scott, A.; Hicks, S.; Leon, R. 2016. An experimental study on strength and serviceability of reinforced and steel fibre reinforced concrete (SFRC) continuous composite slabs, Engineering Structures 114: 171–180. https://doi.org/10.1016/j.engstruct.2016.02.010

Głodkowska, W.; Kobaka, J. 2009. Application of waste sands for making industrial floors, Rocznik Ochrona Srodowiska 11(1).

Głodkowska, W.; Kobaka, J. 2012. The model of brittle matrix composites for distribution of steel fibres, Journal of Civil Engineering and Management 18(1): 145–150. https://doi.org/10.3846/13923730.2012.657405

Głodkowska, W.; Laskowska-Bury, J. 2015. Waste sands as a valuable aggregates to produce fibre-composites, Rocznik Ochrona Srodowiska 17: 507–525.

Hendriks, C. F.; Janssen, G. M. T. 2003. Use of recycled materials in constructions, Materials and Structures 36(263): 604–608. https://doi.org/10.1007/BF02483280

Hoła, J.; Schabowicz, K. 2010. State-of-the-art non-destructive methods for diagnostic testing of building structures – anticipated development trends, Archives of Civil and Mechanical Engineering 10(3): 5–18. https://doi.org/10.1016/S1644-9665(12)60133-2

Kim, W.; Kim, J.; Kwak, Y.-K. 2016. Evaluation of flexural strength prediction of reinforced concrete beams with steel fibres, Journal of Structural Integrity and Maintenance 1(4): 156–166. https://doi.org/10.1080/24705314.2016.1240522

Lataste, J. F.; Behloul, M.; Breysse, D. 2008. Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements, NDT and E International 41(8): 638–647. https://doi.org/10.1016/j.ndteint.2008.03.008

Lee, D.-J. 2018. Optimal fiber distribution for tensile properties of injection molded composite, Advanced Composite Materials 27(3): 279–295. https://doi.org/10.1080/09243046.2017.1405601

Li, J.; Wu, C.; Hao, H.; Su, Y.; Liu, Z. 2016. Blast resistance of concrete slab reinforced with high performance fibre material, Journal of Structural Integrity and Maintenance 1(2): 51–59. https://doi.org/10.1080/24705314.2016.1179496

Lusis, V.; Krasnikovs, A.; Kononova, O.; Lapsa, V.-A.; Stonys, R.; Macanovskis, A.; Lukasenoks, A. 2017. Effect of short fibers orientation on mechanical properties of composite material – fiber reinforced concrete, Journal of Civil Engineering and Management 23(8): 1091–1099. https://doi.org/10.3846/13923730.2017.1381643

Mahmod, M.; Hanoon, A. N.; Abed, H. J. 2018. Flexural behavior of self-compacting concrete beams strengthened with steel fiber reinforcement, Journal of Building Engineering 16: 228–237. https://doi.org/10.1016/j.jobe.2018.01.006

Maidl, B. 1995. Steel fibre reinforced concrete. Ernst & Sohn.

Meng, G.; Gao, B.; Zhou, J.; Cao, G.; Zhang, Q. 2016. Experimental investigation of the mechanical behavior of the steel fiber reinforced concrete tunnel segment, Construction and Building Materials 126: 98–107. https://doi.org/10.1016/j.conbuildmat.2016.09.028

Meyer, C. 2009. The greening of the concrete industry, Cement and Concrete Composites 31(8): 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010

Pinter, P.; Dietrich, S.; Bertram, B.; Kehrer, L.; Elsner, P.; Weidenmann, K. A. 2018. Comparison and error estimation of 3D fibre orientation analysis of computed tomography image data for fibre reinforced composites, NDT & E International 95: 26–35. https://doi.org/10.1016/j.ndteint.2018.01.001

PN-B-04111:1984. Materiały kamienne – Oznaczanie ścieralności na tarczy Boehmego. Polish standard, 1984.

Soares, D.; De Brito, J.; Ferreira, J.; Pacheco, J. 2014. In situ materials characterization of full-scale recycled aggregates concrete structures, Construction and Building Materials 71: 237–245. https://doi.org/10.1016/j.conbuildmat.2014.08.025

Sukontasukkul, P.; Pomchiengpin, W.; Songpiriyakij, S. 2010. Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature, Construction and Building Materials 24(10): 1967–1974. https://doi.org/10.1016/j.conbuildmat.2010.04.003

Teng, T.-L.; Chu, Y.-A.; Chang, F.-A.; Shen, B.-C.; Cheng, D.-S. 2008. Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact, Computational Materials Science 42(1): 90–99. https://doi.org/10.1016/j.commatsci.2007.06.013

Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E. A.; Angulo, S. C. 2013. Separability studies of construction and demolition waste recycled sand, Waste Management 33(3): 656–662. https://doi.org/10.1016/j.wasman.2012.06.018

Uygunoǧlu, T. 2008. Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete, Materials and Structures 41(8): 1441–1449. https://doi.org/10.1617/s11527-007-9341-y

Wang, Z. L.; Liu, Y. S.; Shen, R. F. 2008. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression, Construction and Building Materials 22(5): 811–819. https://doi.org/10.1016/j.conbuildmat.2007.01.005

Wang, Z. L.; Wu, L. P.; Wang, J. G. 2010. A study of constitutive relation and dynamic failure for SFRC in compression, Construction and Building Materials 24(8): 1358–1363. https://doi.org/10.1016/j.conbuildmat.2009.12.038

Weiler, B.; Grosse, C. 1995. Elastische Parameter – ihre dynamische Messung und Berechnung [Elastic constants – their dynamic measurement and calculation], Otto Graf Journal 6: 1–16.

Yap, S. P.; Alengaram, U. J.; Jumaat, M. Z. 2016. The effect of aspect ratio and volume fraction on mechanical properties of steel fibre-reinforced oil palm shell concrete, Journal of Civil Engineering and Management 22(2): 168–177. https://doi.org/10.3846/13923730.2014.897970

Yazıcı, Ş.; İnan, G.; Tabak, V. 2007. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC, Construction and Building Materials 21(6): 1250–1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025

Zhang, Y.; Dias-da-Costa, D. 2017. Seismic vulnerability of multi-span continuous girder bridges with steel fibre reinforced concrete columns, Engineering Structures 150: 451–464. https://doi.org/10.1016/j.engstruct.2017.07.053