Share:


The use of Geographic Information System (GIS) and Remote Sensing (RS) for potential unconfined groundwater in structural and volcano landforms

    Haikal Muhammad Ihsan   Affiliation
    ; Riko Arrasyid Affiliation
    ; Darsiharjo Darsiharjo Affiliation
    ; Mamat Ruhimat Affiliation

Abstract

The Northern Bandung area covers two landforms, namely volcano and structural landforms. Unconfined groundwater has become the water source for local people’s daily needs in both landforms. It is necessary to map the potential unconfined groundwater for both volcano and structural landforms due to the significant role of springs for the local people living in those areas. This research aims to map the unconfined groundwater on the volcano and structural landforms. This study employed the approaches of Analytical Hierarchy Process (AHP), Geographic Information System (GIS), and Remote Sensing (RS) using the variables of lineament density, rainfall, slope, and Topographic Wetness Index (TWI), hydrogeology, drainage density, and land use. The result shows that each variable has the Consistency Ratio (CR) below 0,1, resulting in consistent research variables and appropriate for discussion. The classification of the potential groundwater is divided into three categories: low, medium, and high. The survey validation finds that 147 springs spread at 86 high lands, 55 medium lands, and six lowlands. This model can be an alternative to map the potential unconfined groundwater in both volcano and structural areas.

Keyword : Geography Information System, Remote Sensing, groundwater

How to Cite
Ihsan, H. M., Arrasyid, R., Darsiharjo, D., & Ruhimat, M. (2023). The use of Geographic Information System (GIS) and Remote Sensing (RS) for potential unconfined groundwater in structural and volcano landforms. Geodesy and Cartography, 49(2), 125–132. https://doi.org/10.3846/gac.2023.17455
Published in Issue
Jul 5, 2023
Abstract Views
472
PDF Downloads
348
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmadi, H., Kaya, O. A. Babadagi, E., Savas, T., & Pekkan, E. (2021). GIS-Based groundwater potentiality mapping using AHP and FR models in Central Antalya, Turkey. Environmental Sciences Proceedings, 5(1), 11. https://doi.org/10.3390/IECG2020-08741

Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., & Fede­rico, C. (2003). Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Applied Geochemistry, 18(6), 863–882. https://doi.org/10.1016/S0883-2927(02)00182-8

Al-Shabeeb, A. R., Al-Adamat, R., Al-Fugara, A., Al-Amoush, H., & AlAyyash, S. (2018). Delineating groundwater potential zones within the Azraq Basin of Central Jordan using multi-criteria GIS analysis. Groundwater for Sustainable Development, 7, 82–90. https://doi.org/10.1016/j.gsd.2018.03.011

Amponsah, T. Y., Danuor, S. K., Wemegah, D. D., & Forson, E. D. (2022). Groundwater potential characterisation over the voltaian basin using geophysical, geological, hydrological and topographical datasets. Journal of African Earth Sciences, 192, 104558. https://doi.org/10.1016/j.jafrearsci.2022.104558

Andualem, T. G., Demeke, G. G., Ahmed, I., Dar, M. A., & Yibeltal, M. (2021). Groundwater recharge estimation using empirical methods from rainfall and streamflow records. Journal of Hydrology: Regional Studies, 37, 100917. https://doi.org/10.1016/j.ejrh.2021.100917

Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-38567-x

Hargono, B., Sartohadi, J., Pramonohadi, M., & Setiawan, B. (2014). Spatial model for ground water conservation based on landform approach in the Southern Flank of Merapi Vulcano. Journal of Geography and Earth Sciences, 2(2), 1–20. https://doi.org/10.15640/jges.v2n2a1

Bhadran, A., Girishbai, D., Jesiya, N. P., Gopinath, G., Krishnan, R. G., & Vijesh, V. K. (2022). A GIS based Fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosystems and Geoenvironment, 1(4), 100093. https://doi.org/10.1016/j.geogeo.2022.100093

Chen, F.-W., & Liu, C.-W. (2012). Estimation of the spatial rainfall distribution using Inverse Distance Weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222. https://doi.org/10.1007/s10333-012-0319-1

Dianardi, K., Jumhari, J., Hadian, M. S. D., & Waliyana, T. Y. (2018). Characteristics of groundwater on the Eastern Slope of Mount Ciremai, Kuningan Regency, West Java, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 3(4), 187–191. https://doi.org/10.24273/jgeet.2018.3.4.1606

Doke, A. B., Zolekar, R. B., Patel, H., & Das, S. (2021). Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecological Indicators, 127, 107685. https://doi.org/10.1016/j.ecolind.2021.107685

El-Hadidy, S. M., & Morsy, S. M. (2022). Expected Spatio-temporal variation of groundwater deficit by integrating groundwater modeling, remote sensing, and GIS techniques. Egyptian Journal of Remote Sensing and Space Science, 25(1), 97–111. https://doi.org/10.1016/j.ejrs.2022.01.001

Epuh, E. E., Okolie, C. J., Daramola, O. E., Ogunlade, F. S., Oyatayo, F. J., Akinnusi, S. A., & Emmanuel, E.-O. I. (2020). An integrated lineament extraction from satellite imagery and gravity anomaly maps for groundwater exploration in the Gongola Basin. Remote Sensing Applications: Society and Environment, 20, 100346. https://doi.org/10.1016/j.rsase.2020.100346

Favier, V., Coudrain, A., Cadier, E., Francou, B., Ayabaca, E., & Maisincho, L. (2008). Evidence of groundwater flow on Antizana ice-covered volcano, Ecuador. Hydrological Sciences Journal, 53(1), 278–291. https://doi.org/10.1623/hysj.53.1.278

Ghorbani Nejad, S., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2), 167–187. https://doi.org/10.1080/10106049.2015.1132481

Grabs, T., Seibert, J., Bishop, K., & Laudon, H. (2009). Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 373(1–2), 15–23. https://doi.org/10.1016/j.jhydrol.2009.03.031

Hussain, F., Wu, R. S., & Shih, D. S. (2022). Water Table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D. Journal of Hydrology: Regional Studies, 39, 100988. https://doi.org/10.1016/j.ejrh.2022.100988

Ihsan, H. M., Hadi, M. P., & Sartohadi, J. (2020). Step-wise overlay technique for the mapping of unconfined groundwater potential zone in tectonically controlled landforms. International Journal of Geoinformatics, 16(4), 20–28. https://journals.sfu.ca/ijg/index.php/journal/article/view/1791

Ihsan, H. M., Astari, A. J., Bratanegara, A. S., Aliyan, S. A., & Wulandari, E. P. (2021). The Comparison of spatial models in Peak Ground Acceleration (PGA) study. International Journal of Geoinformatics, 17(6), 27–33. https://doi.org/10.52939/ijg.v17i6.2061

Saint Jean Patrick Coulibaly, H., Honoré, C. T. J., Naga, C., Kouadio, K. C. A., Didi, S. R. M., Diedhiou, A., & Savane, I. (2021). Groundwater exploration using extraction of lineaments from SRTM DEM and water flows in Béré Region. Egyptian Journal of Remote Sensing and Space Science, 24(3), 391–400. https://doi.org/10.1016/j.ejrs.2020.07.003

Khakim, M. Y. N., Tsuji, T., & Matsuoka, T. (2014). Lithology-controlled subsidence and seasonal aquifer response in the Bandung Basin, Indonesia, observed by synthetic aperture radar interferometry. International Journal of Applied Earth Observation and Geoinformation, 32(1), 199–207. https://doi.org/10.1016/j.jag.2014.04.012

Kopecký, M., Macek, M., & Wild, J. (2021). Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Science of the Total Environment, 757, 143785. https://doi.org/10.1016/j.scitotenv.2020.143785

Liang, W.-L., & Chan, M.-C. (2017). Spatial and Temporal variations in the effects of soil depth and topographic wetness index of bedrock topography on subsurface saturation generation in a steep natural forested headwater catchment. Journal of Hydrology, 546, 405–418. https://doi.org/10.1016/j.jhydrol.2017.01.033

Mahmud, S., Hamza, S., Irfan, M., Huda, S. N., Burke, F., & Qadir, A. (2022). Investigation of groundwater resources using electrical resistivity sounding and Dar Zarrouk parameters for Uthal Balochistan, Pakistan. Groundwater for Sustainable Development, 17, 100738. https://doi.org/10.1016/j.gsd.2022.100738

Maryati, S., Firman, T., & Humaira, A. N. S. (2022). A sustainability assessment of decentralized water supply systems in Bandung City, Indonesia. Utilities Policy, 76, 101373. https://doi.org/10.1016/j.jup.2022.101373

Melese, T., & Belay, T. (2022). Groundwater Potential zone mapping using analytical hierarchy process and GIS in Muga Watershed, Abay Basin, Ethiopia. Global Challenges, 6(1), 2100068. https://doi.org/10.1002/gch2.202100068

Moodley, T., Seyam, M., Abunama, T., & Bux, F. (2022). Delineation of groundwater potential zones in KwaZulu-Natal, South Africa using remote sensing, GIS and AHP. Journal of African Earth Sciences, 193, 104571. https://doi.org/10.1016/j.jafrearsci.2022.104571

Oikonomidis, D., Dimogianni, S., Kazakis, N., & Voudouris, K. (2015). A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology, 525, 197–208. https://doi.org/10.1016/j.jhydrol.2015.03.056

Razavi-Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S.-M. (2019). Groundwater Potential mapping using an integrated ensemble of three bivariate statistical models with random forest and logistic model tree models. Water, 11(8), 1596. https://doi.org/10.3390/w11081596

Saar, M. O., & Manga, M. (2003). Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth and Planetary Science Letters, 214(3–4), 605–618. https://doi.org/10.1016/S0012-821X(03)00418-7

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, T. L., & Vargas, L. G. (2001). Models, methods, concepts & applications of the analytic hierarchy process. Springer. https://doi.org/10.1007/978-1-4615-1665-1

Sahu, U., Wagh, V., Mukate, S., Kadam, A., & Patil, S. (2022). Applications of geospatial analysis and analytical hierarchy process to identify the groundwater recharge potential zones and suitable recharge structures in the Ajani-Jhiri watershed of North Maharashtra, India. Groundwater for Sustainable Development, 17, 100733. https://doi.org/10.1016/j.gsd.2022.100733

Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2), 1105–1122. https://doi.org/10.1007/s40808-020-00744-7

Sedghi, M. M., & Zhan, H. (2022). On the discharge variation of a qanat in an alluvial fan aquifer. Journal of Hydrology, 610, 127922. https://doi.org/10.1016/j.jhydrol.2022.127922

Sophocleous, M. (2002). Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(1), 52–67. https://doi.org/10.1007/s10040-001-0170-8

Tamiru, H., & Wagari, M. (2021). Evaluation of data-driven model and GIS technique performance for identification of Groundwater Potential Zones: A case of Fincha Catchment, Abay Basin, Ethiopia. Journal of Hydrology: Regional Studies, 37, 100902. https://doi.org/10.1016/j.ejrh.2021.100902

De Vargas, T., Boff, F. E., Belladona, R., Faccioni, L. F., Reginato, P. A. R., & Schwanck Carlos, F. (2022). Influence of geological discontinuities on the groundwater flow of the serra geral fractured aquifer system. Groundwater for Sustainable Development, 18, 100780. https://doi.org/10.1016/j.gsd.2022.100780

Yildiz, O. (2004). An investigation of the effect of drainage density on hydrologic response. Turkish Journal of Engineering and Environmental Sciences, 28(2), 85–94.

van Zuidam, R. A. (1985). Aerial photo interpretation intrain analysis and geomorphology mapping. Smith Publisher.