Farm Structures and Environmental Controlled Unit, Department of Agricultural and Biosystems Engineering, Landmark University, P.M.B. 1001 Omuaran, Kwara State, Nigeria
In this study, bamboo fibres from Bambusa Vulgaris species were used as reinforcement materials for acrylic emulsion polymer modified concrete to determine their engineering properties and elemental compositions. Moisture absorption, density and percentage voids were investigated as well as the compressive strength, flexural strength and split tensile strength at 28, 45 and 60 days of air curing. Acrylic polymers reduced moisture intake, increased the densities and led to another increase in percentage of voids but composite samples with bamboo fibre inclusions at 1.5% and 10% polymers with 1.5% fibre an 15% polymers showed better physical properties than those with polymers only. Compressive and split tensile strength tests had similar results of optimum strength at 45 days while flexural strength test had optimum value at 60 days of air curing. This showed that the properties of unreinforced concrete could be improved through addition of fibres and polymers for use in structural applications.
Akinyemi, B. A., & Omoniyi, T. E. (2017). Engineering properties of acrylic emulsion polymer modified bamboo reinforced cement bonded composites. Engineering Structures and Technologies, 9(3), 126-132. https://doi.org/10.3846/2029882X.2017.1371085
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Engineering Structures and Technologies as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.