Share:


Proposal of procedure for identification of Menétrey–Willam (M-W-3) plasticity surface of homogeneous and hollow masonry units

    Radosław Jasiński Affiliation

Abstract

The article presents the author’s proposal to determine the parameters of the Mentérey–Willam (M-W-3) plasticity surface of the homogeneous masonry elements made of autoclaved aerated concrete (AAC) and vertically hollow calcium-silicate (Ca-Si) masonry units. The uniaxial and triaxial tests of AAC samples in a standard Hoek’s cell was performed while the hollow units made of silicate were tested on a custom-made test stand. By performing statistical analyses, the shape of the meridians of the surface was determined, and then the eccentricity e of the elliptical function was identified.

Keyword : Menétrey–Willam plasticity surface, uniaxial test, triaxial test, AAC masonry unit, hollow silicate masonry units

How to Cite
Jasiński, R. (2019). Proposal of procedure for identification of Menétrey–Willam (M-W-3) plasticity surface of homogeneous and hollow masonry units. Engineering Structures and Technologies, 11(2), 40-49. https://doi.org/10.3846/est.2019.10582
Published in Issue
Jul 5, 2019
Abstract Views
900
PDF Downloads
539
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Červenka, J., & Papanikolaou, V. K. (2008). Three dimensional combined fracture-plastic material model for concrete. International Journal of Plasticity, 24, 2008, 2192-2220. https://doi.org/10.1016/j.ijplas.2008.01.004

Červenka, V., Pukl, R., Ozbolt, J., & Eligehausen, R. (1995). Mesh sensitivity effects in smeared finite element analysis of concrete structures. In Proceedings of the 2nd International Conference on Fracture Mechanics of Concrete Structures – FraMCoS 2, (pp. 1387-1396).

Červenka, V. (1985). Constitutive model for cracked reinforced concrete. Journal Proceedings, 82(6), 877-882. https://doi.org/10.14359/10409

Drobiec, Ł. (2006). FEM micro-model for masonry reinforced in bed joints. In Proceedings of the British Masonry Society, No. 10. The Society Stoke-on-Trent.

Drobiec, Ł. (2013). Przeciwdziałanie zarysowaniu ściskanych murów zbrojeniem spoin wspornych. Gliwice: Wydawnictwo Politechniki Śląskiej (in Polish).

Drobiec, Ł., & Jasiński, R. (2017). Adoption of the Willam-Warnke failure criterion for describing behavior of Ca-Si hollow blocks. Procedia Engineering, 193, 470-477. https://doi.org/10.1016/j.proeng.2017.06.239

Drobiec, Ł., Jasiński, R., & Mazur, W. (2017). Precast lintels made of autoclaved aerated concrete – tests and theoretical analyses. Cement, Wapno, Beton, 22(5), 399-413.

Hoek, E., & Brown, E. T. (1980). Empirical criterion for rock masses. Journal of the Geotechnical Engineering Division, 106(GT9), 1013-1035.

Jasiński, R. (2011). Numerical model of the horizontally sheared wall. In 7th International Conference Analytical Models and New Concepts in Concrete and Masonry Structures AMCM 2011, Kraków, Poland (pp. 233-234).

Jasiński, R., Drobiec, Ł., & Piekarczyk, A. (2016a). Mechanical properties of masonry walls made of calcium silicate materials made in Poland. Part 1. Masonry properties and compressive strength. Procedia Engineering, 161, 904-910. https://doi.org/10.1016/j.proeng.2016.08.755

Jasiński, R., Drobiec, Ł., & Piekarczyk, A. (2016b). Mechanical properties of masonry walls made of calcium silicate materials made in Poland. Part 2. Shear and flexural strength. Procedia Engineering, 161, 911-917. https://doi.org/10.1016/j.proeng.2016.08.756

Jasiński, R. (2017a). Identification of the parameters of Menétrey–Willam failure surface of calcium silicate units. IOP Publishing. IOP Conference Series: Materials Science and Engineering, 245, 032045. https://doi.org/10.1088/1757-899X/245/3/032045

Jasiński, R. (2017b). Research and modeling of masonry shear walls (PhD, DSc thesis). Gliwice: Wydawnictwo Politechniki Śląskiej (in Polish). https://doi.org/10.20944/preprints201806.0184.v1

Jasiński, R., Drobiec, Ł., & Mazur, W. (2019). Validation of selected non-destructive methods for determining the compressive strength of Masonry Units made of autoclaved aerated concrete. Materials, 12(3), 389. https://doi.org/10.3390/ma12030389

Kubica, J. (2003). Niezbrojone ściany murowe poddane odkształceniom postaciowym wywołanym nierównomiernymi pionowymi przemieszczeniami podłoża. Zeszyty Naukowe Politechniki Śląskiej. Budownictwo, z. 96. Gliwice: Wydawnictwo Politechniki Śląskiej (in Polish).

Majewski, S. (2003). Mechanika betonu konstrukcyjnego w ujęciu sprężysto-plastycznym. Gliwice: Wydawnictwo Politechniki Śląskiej (in Polish).

Małyszko, L., Jemioło, S., Bilko, P., & Gajewski, M. (2015). MES i modelowanie konstytutywne w analizie zniszczenia konstrukcji murowych. Tom 2 – Implementacja i przykłady. Olsztyn: Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego (in Polish).

Menétrey, P., & Willam, K. J. (1995). Triaxial failure criterion for concrete and its generalization. ACI Structural Journal, 92(3), 311-318. https://doi.org/10.14359/1132

Szojda, L. (2009). Analiza numeryczna wpływu nieciągłych deformacji podłoża na budynki ścianowe. Gliwice: Wydawnictwo Politechniki Śląskiej (in Polish).

Wawrzynek, A., & Cińcio, A. (2005). Adaptation of a plasticdamage concrete model for masonry material subjected to cyclic load. Paper presented at Proceedings of the VIII International Conference on Computational Plasticity, COMPLAS VIII, Barcelona, Spain.

Weihe, S. (1989). Implicit integration schemes for multi-surface yeld criteria subjected to hardening/softening behavior (MS thesis). University of Colorado-Bulder.