Share:


Classification, military applications, and opportunities of unmanned aerial vehicles

    Linker Criollo Affiliation
    ; Carlos Mena-Arciniega Affiliation
    ; Shen Xing Affiliation

Abstract

Unmanned aerial vehicles (UAVs) are cutting-edge technologies used for military purposes world-wide at tactical, operational, and strategic levels. This study provides an overview of the history and current state of military drones, considering a global and Ecuadorian background. Then, a classification of the UAVs developed and built in Ecuador is conducted based on their endurance, altitude, and wing span to understand the national context and progress. The research also delves into the applications of UAVs in several military operations and missions, aiming to create a framework that aligns UAV capabilities with specific operational needs; this permits the identification of the challenges and opportunities the country faces. Unmanned aerial systems have changed the battlefield, and the government needs to adapt to a national strategy that incorporates this technology; this research analyzes and provides insights to improve military capabilities such as exploring modern UAV military applications, technical updates in communication, navigation, and data acquisition systems; and the integration of emerging technologies like smart materials, artificial intelligence, and electric propulsion systems. This study provides valuable insights into the Ecuadorian UAVs that enhance the country’s military operations and offer some applications and uses of this technology for national security.

Keyword : military drones, military capabilities, modern military applications, unmanned aerial vehicle, UAV classification, military operations

How to Cite
Criollo, L., Mena-Arciniega, C., & Xing, S. (2024). Classification, military applications, and opportunities of unmanned aerial vehicles. Aviation, 28(2), 115–127. https://doi.org/10.3846/aviation.2024.21672
Published in Issue
Aug 19, 2024
Abstract Views
682
PDF Downloads
481
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abiodun, T. F., & Taofeek, C. R. (2020). Unending war on Boko Haram terror in Northeast Nigeria and the need for deployment of military robots or autonomous weapons systems to complement military operations. International Journal of Advanced Academic Research, 6(6), 1–17. https://doi.org/10.46654/ij.24889849.s662

Acosta, A., & Mantilla, J. (2024, January 8). Executive Decree No. 110. President of the Republic of Ecuador declared a state of emergency throughout the national territory. Dentons. https://www.dentons.com/en/insights/articles/2024/january/12/decretos-ejecutivos-no-110-de-08-de-enero-de-2024-y-no-111-de-09-de-enero-de-2024

Al-Khawaja, A., & Sadkhan, S. B. (2021). Intelligence and electronic warfare: Challenges and future trends. In 2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM) (pp. 118–123). IEEE. https://doi.org/10.1109/ICCITM53167.2021.9677877

Alladi, T., Chamola, V., Sahu, N., & Guizani, M. (2020). Applications of blockchain in unmanned aerial vehicles: A review. Vehicular Communications, 23, Article 100249. https://doi.org/10.1016/j.vehcom.2020.100249

Andrade Santamaría, A. A., & Molina Bustamante, C. S. (2016). Estudio del Estado del Arte de las Tecnologías de Percepción Remota en el Ecuador. Universidad de las Américas.

Bendea, H., Boccardo, P., Dequal, S., Giulio Tonolo, F., Marenchino, D., & Piras, M. (2008). Low cost UAV for post-disaster assessment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B8), 1373–1379.

Bergmann, K. (2020). RAAF starts to examine trusted autonomy for uninhabited aerial systems. Asia-Pacific Defence Reporter (2002), 46(10), 26–30. https://search.informit.org/doi/abs/10.3316/informit.633837801916641

Blom, J. D. (2010). Unmanned aerial systems: A historical perspective (Vol. 45). Combat Studies Institute Press Fort Leavenworth, KS.

Bronz, M., Hattenberger, G., & Moschetta, J. M. (2013). Development of a long endurance mini-UAV: Eternity. International Journal of Micro Air Vehicles, 5(4), 261–272. https://doi.org/10.1260/1756-8293.5.4.261

Castellanos-Sanabria, Y. A., & Rodríguez-Pirateque, G. W. (2020). UAV systems for multipurpose heterogeneous networks: A review of design, development and performance. Aeronautics and Aerospace Open Access Journal, 4(3), 121–140. https://doi.org/10.15406/aaoaj.2020.04.00114

Chaturvedi, S. K., Sekhar, R., Banerjee, S., & Kamal, H. (2019). Comparative review study of military and civilian unmanned aerial vehicles (UAVs). INCAS Bulletin, 11(3), 183–198. https://doi.org/10.13111/2066-8201.2019.11.3.16

Despont, C. P., Kunertova, D., & Masuhr, N. (2022). Militärische Drohnennutzung: Erfahrungen, Technologie und Schweizer Optionen. In Bulletin 2022 zur schweizerischen Sicherheitspolitik (pp. 31–62). Enter for Security Studies (CSS), ETH Zürich. https://doi.org/10.56181/AZGO1008

Diasinos, S., Barber, T. J., & Doig, G. (2013). Influence of wing span on the aerodynamics of wings in ground effect. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(3), 569–573. https://doi.org/10.1177/0954410011434884

Gašparović, M., & Gajski, D. (2016). Unmanned aerial photogrammetric systems in the service of engineering geodesy. In International Symposium on Engineering Geodesy (pp. 20–22). Varaždin, Croatia.

Gertler, J. (2012). US unmanned aerial systems. Congressional Research Service Washington, DC.

Gortney, W. E. (2016). Department of defense dictionary of military and associated terms. Joint Chiefs of Staff Washington United States.

Gupta, S. G., Ghonge, D. M., & Jawandhiya, P. M. (2013). Review of unmanned aircraft system (UAS). International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(4). https://doi.org/10.2139/ssrn.3451039

Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131. https://doi.org/10.1016/j.paerosci.2017.04.003

Hlotov, V., Hunina, A., Kniaziev, S., Kolesnichenko, V., & Prokhorchuk, O. (2019). Analysis of application of the UAVs for military tasks. Suchasnі Dosyagnennya Geodezichnoї Nauki Ta Virobnitstva, 1(37), 69–77. https://doi.org/10.33841/1819-1339-2019-1-37-69-77

Jaramillo, E. (2014). Aplicaciones de los UAS en Apoyo al Desarrollo en el Ecuador. Aeroespacial, Investigación y Desarrollo, 4, 25–28.

Jara-Olmedo, A., Medina-Pazmiño, W., Galarza, E. E., Silva, F. M., Galarza, E. D., & Naranjo, C. A. (2018). Data link system flight tests for unmanned aerial vehicles. In A. Rocha & T. Guarda (Eds), Developments and Advances in Defense and Security: Proceedings of the Multidisciplinary International Conference of Research Applied to Defense and Security (Vol. 94, pp. 151–161). Springer. https://doi.org/10.1007/978-3-319-78605-6_12

Jung, S., Jo, Y., & Kim, Y.-J. (2019). Aerial surveillance with low-altitude long-endurance tethered multirotor UAVs using photovoltaic power management system. Energies, 12(7), Article 1323. https://doi.org/10.3390/en12071323

Kaamin, M., Razali, S. N. M., Ahmad, N. F. A., Bukari, S. M., Ngadiman, N., Kadir, A. A., & Hamid, N. B. (2017). The application of micro UAV in construction project. AIP Conference Proceedings, 1891(1), Article 020070. https://doi.org/10.1063/1.5005403

Kappenman, J. (2008). Army unmanned aircraft systems: Decisive in battle. Joint Force Quarterly, 49, 20–23.

Karpenko, M., & Nugaras, J. (2022). Vibration damping characteristics of the cork-based composite material in line to frequency analysis. Journal of Theoretical and Applied Mechanics, 60(4), 593–602. https://doi.org/10.15632/jtam-pl/152970

Karpenko, M., Stosiak, M., Deptuła, A., Urbanowicz, K., Nugaras, J., Królczyk, G., & Żak, K. (2023). Performance evaluation of extruded polystyrene foam for aerospace engineering applications using frequency analyses. The International Journal of Advanced Manufacturing Technology, 126(11), 5515–5526. https://doi.org/10.1007/s00170-023-11503-0

Karpowicz, J. (2021). Warfare use of unmanned aerial vehicles. Safety & Defense, 2, 51–64. https://doi.org/10.37105/sd.135

Kim, S. J., Lim, G. J., & Cho, J. (2018). Drone relay stations for supporting wireless communication in military operations. In J. Chen (Eds), Advances in Human Factors in Robots and Unmanned Systems. AHFE 2017. Advances in Intelligent Systems and Computing (Vol. 595). Springer. https://doi.org/10.1007/978-3-319-60384-1_12

Kozera, C. A. (2018). Military use of unmanned aerial vehicles – a historical study. Safety & Defense, 4, 17–21. https://doi.org/10.37105/sd.4

Kunertova, D. (2019). Military drones in Europe: The European defense market and the spread of military UAV technology. SDU. https://www.sdu.dk/en/cws

Kunertova, D. (2023). The war in Ukraine shows the game-changing effect of drones depends on the game. Bulletin of the Atomic Scientists, 79(2), 95–102. https://doi.org/10.1080/00963402.2023.2178180

Lekanda Laban, P. (2010). El conflicto territorial entre Ecuador y Perú por el río del Cenepa (1995): Entre una mediación fallida y otra exitosa. Pléyade, 4, 186–211. https://revistapleyade.cl/index.php/OJS/article/view/281

Mayer, S., Lischke, L., & Woźniak, P. W. (2019). Drones for search and rescue. In 1st International Workshop on Human-Drone Interaction. Glasgow, Scotland, UK.

Montoya, P. B., & Briones, R. V. (2019). Empleo de los UAV, en operaciones de seguridad y vigilancia en las áreas estratégicas en el ecuador. Revista de Ciencias de Seguridad y Defensa, 4(4), 15–15.

Patel, T., Salot, N., & Parikh, V. (2022). A systematic literature review on Security of Unmanned Aerial Vehicle Systems. arXiv Preprint arXiv:2212.05028. https://doi.org/10.48550/arXiv.2212.05028

PS, R., & Jeyan, M. L. (2020). Mini unmanned aerial systems (UAV) – A review of the parameters for classification of a Mini UAV. International Journal of Aviation, Aeronautics, and Aerospace, 7(3), Article 5. https://doi.org/10.15394/ijaaa.2020.1503

Rana, K., Praharaj, S., & Nanda, T. (2016). Unmanned aerial vehicles (UAVs): An emerging technology for logistics. International Journal of Business and Management Invention, 5(5), 86–92.

Research and markets. (2024). UAV drones – global strategic business report (Anual 4806222). http://tinyurl.com/Research-Markets-UAVs-2024

Rodman, D. (2010). Unmanned aerial vehicles in the service of the Israel Air Force: “They will soar on wings like eagles”. Middle East Review of International Affairs Journal, 14(3), 77–84.

Sadot, U. (2016). A perspective on Israel. Center for a New American.

Samad, T., Bay, J. S., & Godbole, D. (2007). Network-centric systems for military operations in urban terrain: The role of UAVs. Proceedings of the IEEE, 95(1), 92–107. https://doi.org/10.1109/JPROC.2006.887327

Sánchez-Zuluaga, G. J., Isaza-Giraldo, L., Zapata-Madrigal, G. D., García-Sierra, R., & Candelo-Becerra, J. E. (2023). Unmanned aircraft systems: A Latin American review and analysis from the Colombian context. Applied Sciences, 13(3), Article 1801. https://doi.org/10.3390/app13031801

Sigala, A., & Langhals, B. (2020). Applications of unmanned aerial systems (UAS): A Delphi study projecting future UAS missions and relevant challenges. Drones, 4(1), Article 8. https://doi.org/10.3390/drones4010008

Silva, D. M., de Oliveira, L. F. F., Macedo, M. G., & Bastos Filho, C. J. (2012). On the analysis of a swarm intelligence based coordination model for multiple unmanned aerial vehicles. In 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium (pp. 208–213). IEEE. https://doi.org/10.1109/SBR-LARS.2012.41

Szabolcsi, R. (2018). UAV operator training – beyond minimum standards. Scientific Research and Education in The Air Force-Afases. https://doi.org/10.19062/2247-3173.2016.18.1.25

Tian, T., Zhou, F., Li, Y., Sun, B., Fan, W., Gong, C., & Yang, S. (2020). Performance evaluation of deception against synthetic aperture radar based on multifeature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 103–115. https://doi.org/10.1109/JSTARS.2020.3028858

Ukaegbu, U., Tartibu, L., & Okwu, M. (2021). Unmanned aerial vehicles for the future: Classification, challenges, and opportunities. In 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD) (pp. 1–7). IEEE. https://doi.org/10.1109/icABCD51485.2021.9519367

Venable, J. (2020). US air force. https://www.heritage.org/military

Wang, H., Cheng, H., & Hao, H. (2020). The use of unmanned aerial vehicle in military operations. In S. Long & B. S. Dhillon, Man-Machine-Environment System Engineering. MMESE 2020. Lecture Notes in Electrical Engineering (Vol. 645, pp. 939–945). Springer. https://doi.org/10.1007/978-981-15-6978-4_108

Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 4(6), 1671–1692. https://doi.org/10.3390/rs4061671

Xu, C., Liao, X., Tan, J., Ye, H., & Lu, H. (2020). Recent research progress of unmanned aerial vehicle regulation policies and technologies in urban low altitude. IEEE Access, 8, 74175–74194. https://doi.org/10.1109/ACCESS.2020.2987622

Zountouridou, E., Kiokes, G., Dimeas, A., Prousalidis, J., & Hatziargyriou, N. (2023). A guide to unmanned aerial vehicles performance analysis – the MQ‐9 unmanned air vehicle case study. The Journal of Engineering, 2023(6), Article e12270. https://doi.org/10.1049/tje2.12270