Share:


Implementation study of a passive safety feature in the rescue systems of small aircrafts

    Tomáš Hájek Affiliation
    ; Robert Grim Affiliation
    ; Robert Popela Affiliation

Abstract

The aim of this paper is to evaluate the feasibility of implementation of a passive safety feature in the form of an under-fuselage airbag in the rescue systems of small aircraft. The paper presents a multidisciplinary approach for the viability of the implementation. It presents the development of mathematical model for airbag performance analysis. The model is validated against the experimental data to account for various simplifications. Validated mathematical model is used to design a full-scale airbag for the chosen airplane to perform in the designed range. Weight penalty for increased safety is determined.

Keyword : parachute rescue, passive safety, airbag, impact attenuation, experimental validation, ultralight aircraft

How to Cite
Hájek, T., Grim, R., & Popela, R. (2023). Implementation study of a passive safety feature in the rescue systems of small aircrafts. Aviation, 27(3), 187–196. https://doi.org/10.3846/aviation.2023.19966
Published in Issue
Nov 15, 2023
Abstract Views
209
PDF Downloads
215
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alizadeh, M., Sedaghat, A., & Kargar, E. (2014). Shape and orifice optimization of airbag systems for UAV parachute landing. International Journal of Aeronautical & Space Sciences, 15(3), 112–121. https://doi.org/10.5139/IJASS.2014.15.3.335

Astronautix. (2023). Luna. http://www.astronautix.com/l/luna.html

Botton, D. (2021). F-111 rescue system. https://doi.org/10.1515/9781644699096-012

Browning, A. C. (1963). A theoretical approach to air bag shock absorber design by A.C. Browning. Royal Aircraft Establishment.

Cole, J., & Waye, D. (1993). BAG: A code for predicting the performance of a gas bag impact attenuation system for the PATHFINDER lander. Osti. https://doi.org/10.2172/10106335

Defense Update. (2005, December 15). Rotorcraft External Airbag Protection System (REAPS). Defense Update. https://defense-update.com/20051215_reaps.html

Do, S. (2011). An airbag-based crew Impact attenuation system for the Orion crew exploration vehicle. MIT Libraries.

Elbit Systems. (2023). SkylarkTM I – LEX. Elbit Systems. http://elbitsystems.com/products/uas/skylark-i-lex/

Hurley, T. R. (2002). Small airplane crashworthiness design guide [Design Guide]. Simula Technologies.

JP Hobby Europe. (n.d.). EDF Ducted Fan JP Hobby 120mm + motor 18s 510Kv (CW). JP HOBBY Europe. Retrieved September 11, 2022, from https://www.jphobby.eu/en/jp-hobby/2289-edf-ducted-fan-jp-hobby-120mm-motor-18s-510kv-cw.html

Knacke, T. W. (1992). Parachute recovery systems: Design manual (1st ed.). Para Pub.

Lee, C., Rosato, N., & Lai, F. (1991, April 9). An investigation of improved airbag performance by vent control and gas injection. In 11th Aerodynamic Decelerator Systems Technology Conference. San Diego, CA, U.S.A. https://doi.org/10.2514/6.1991-892

Londonson, D. (2017). SOARS for GA and experimental aircraft. AMSAFE. https://www.amsafe.com/airbag-systems/soars/

Manta Air. (2023). UAV and Drone Parachute Recovery. Manta Air. https://manta-air.com/uav_safety_and_recovery_systems/

Norman, L. C., & Kiker, J. W. (1967). Spacecraft landing systems (SAE Technical Paper No. 670403). SAE International. https://doi.org/10.4271/670403

National Transportation Safety Board. (2011). Review of US civil aviation accidents calendar year 2011 (Safety Study NTSB/SS-11/01). NTSB.

Perry, J. A. (1949). Critical flow through sharp-edged orifices. Transactions of the American Society of Mechanical Engineers, 71(7), 757–764. https://doi.org/10.1115/1.4017216

Pesman, G. J., & Eiband, A. M. (1956, November). Crash Injury (Report NACA-TN-3775). UNT Digital Library. https://digital.library.unt.edu/ark:/67531/metadc55999/

Rosato, N. P. (1999). Passive airbag vent control valve study (Technical Report NATICK/TR-00/010). U.S. Army Solider an Biological Chemical Command Solider System Center.

Stein, J., Sandy, C., Wilson, D., Sharpe, G., & Knoll, C. (2003, April 7). Recent developments in inflatable airbag impact attenuation systems for Mars exploration. In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia. https://doi.org/10.2514/6.2003-1900

Šorf, O. (2015). Padákové záchranné systémy lehkých sportovních letadel [Vysoké učení technické v Brně. Fakulta strojního inženýrství]. http://hdl.handle.net/11012/38094

Tutt, B., Gill, S., Wilson, A., & Johnson, K. (2009, May 4). A summary of the development of a nominal land landing airbag impact attenuation system for the Orion Crew module. In 20th AIAA Aerodynamic Decelerator Systems Technology Conference. Washington. https://doi.org/10.2514/6.2009-2922