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Article History:  Abstract. The problem of classification of epoxy composites used for the manufacture of aircraft structures 
is solved by machine learning methods: neural network, reinforced trees and random forests. Classification 
metrics were obtained for each method used. Parameters such as precision, recall, F1 score and support were 
determined. The neural network classifier demonstrated the highest results. Boosted trees and random forests 
showed slightly lower results than the neural network method. At the same time, the classification metrics 
were high enough in each case. Therefore, machine learning methods effectively classify epoxy composites. 
The results obtained are in good agreement with the experimental ones. The prediction accuracy score ob-
tained using each method was greater than 0.88. 
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1. Introduction 

The development and production of light aircraft requires 
intelligent design of composite materials. The high quality 
of small aircraft is ensured by high aerodynamic charac-
teristics, which are provided by new composite materials 
(Tan et al., 2008). The use of composite materials ensures 
high quality of aerodynamic surfaces, durability and good 
repairability during operation in field conditions (Das 
et al., 2019; Guadagno et al., 2022). At the same time, the 
use of epoxy composite materials in elements of aircraft 
structures requires further research. In particular, the use 
of new composite materials offers great opportunities to 
reduce weight, increase UAV range. However, this is as-
sociated with new problems. One of the difficulties in the 
application of new materials with non-linear character-
istics is their dynamic properties, which are determined 
by experimental studies. A proposed procedure for the 
experimental-numerical determination of the elastic-dis-
sipative properties of composite materials is presented in 
the paper (Karpenko et al., 2023). The paper presents a 
theoretical and experimental study of extruded polysty-
rene in laminated composite structures used in aerospace 
engineering. The finite element method used for numeri-
cal simulation, combined with experimental measurements 
based on frequency response optimization, enabled the 
modelling of the behaviour of the porous structure of ex-
truded polystyrene. Especially use the methods of artificial 
intelligence, which ensure the processing of a significant 

number of results with the receipt of additional physically 
correct information (Harris et al., 2001). The use of epoxy 
composites, the characteristic feature of which is a low 
temperature coefficient of linear expansion, allows to re-
duce the thermal stress of aircraft structures (Harris et al., 
2002; Towsyfyan et al., 2020). In addition, the technology 
of selecting the properties of the fillers provides a wide 
variation in the properties of the epoxy composite. The 
optimal thermophysical properties of the epoxy composite 
are achieved by selecting the components and their quan-
titative ratio. The use of neural networks for these tasks 
allows to reduce the volume of field tests and to develop 
intelligent methods of quality control of epoxy composites 
(Dobrotvor et al., 2021; Niccolai et al., 2021).

A material experimental study is being conducted on 
the influence of the manufacturing technology of wound 
composite structures on their mechanical properties (in-
cluding residual stresses). The cooling mode of the com-
posite-resin epoxy structure is analyzed (Błażejewski et al., 
2021). In particular, a study of the effect of cooling rate 
after curing on the mechanical response of thick-walled 
carbon fibre reinforced polymer (CFRP) rings is presented. 
The results presented showed that rapid cooling slightly 
reduces the mechanical performance of fibre-wound rings. 
In particular, computer processing of data obtained during 
thermophysical and mechanical tests of epoxy composites 
is essential for materials science (Lin et al., 2017). Such 
data processing aids in classifying epoxy composites based 
on the intellectualized analysis of their fillers. Heuristic 
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methods or the synthesis of algorithms from the statistical 
solution theory are also helpful (Lee Sanchez et al., 2021; 
Pal, 2007). However, statistical algorithms are not always 
efficient as part of real diagnostic methods because they 
have certain disadvantages: too high complexity in calcu-
lating likelihood functionals for many hypotheses under 
uncertainty; characteristics of real epoxy composites are 
not always well approximated.

Algorithms based on artificial neural networks are used 
in solving classification problems (Wei et al., 2018). Such 
algorithms learn from experimental data. They also aid in 
creating simple algorithms for computation and decision-
making (Safavian & Landgrebe, 1991). 

Theoretical provisions have been developed to evalu-
ate and identify epoxy composite components based on 
fuzzy and neural network systems. Such systems help 
identify links and differences between conventional algo-
rithms and those based on neural networks and fuzzy sys-
tems. Owing to this, it is possible determine synthesized 
evaluation systems advantages and additional capabilities.

Artificial neural network methods are widely used in 
classification tasks (Deng et al., 2018). A classification task 
involves assigning a sample to one of several non-over-
lapping sets. When solving classification problems, the 
diagnostic task consists of assigning the existing object 
characteristics to one or more known classes (according 
to the given data).

However, the issues of choosing the network topology, 
determining the number of layers and neurons, interpret-
ing weight coefficients and displacements, and evaluating 
their relevance remain unaddressed, particularly in classifi-
cation tasks. Another pending issue is choosing the num-
ber of features used. On the one hand, multiple features 
used in constructing the classifier give more information 
for dividing into classes. On the other hand, the classifica-
tion algorithm may become more complex.

Therefore, it is essential to optimize the chemical com-
position and technological parameters that enhance the 
heat resistance of polymer composites. Owing to this, 
improvements caused by advanced thermomechanical re-
search methods, data processing, and the classification of 
epoxy composites based on the analysis of their fillers will 
become more pronounced.

This research aims to classify epoxy composites us-
ing machine learning methods (neural networks, boosted 
trees, and random forests) based on analyzing thermal 
conductivity coefficients and the concentration of their 
fillers (mass fraction of the filler).

2. Material and methods

Understanding the effect of polyfunctional fillers on epoxy 
composite properties is essential for their diagnostic eval-
uation. Epoxy polymers filled with aerosil, γ-aminopropyl 
aerosil, aluminum oxide, and chromium oxide were 
classified using the most versatile and efficient learning 
algorithms, such as neural networks, boosted trees, and 
random forests (Mohanty et al., 2009; Pidaparti & Palakal, 

1995; Yasnii et al., 2018; Yasniy et al., 2024). This is done 
with the participation of a teacher. Teacher participation 
consists of providing knowledge in the form of input-out-
put pairs. The teacher formulates and transmits a desired 
response to the neural network. This response results from 
the optimal actions the neural network should perform. 
Network parameters are adjusted based on the training 
vector and the error signal, that is, a difference between 
the desired and actual signals at the network output. 

Neural networks are complex mathematical models de-
signed on the principles underlying the functioning of the 
biological neural networks of the human brain. They imi-
tate the structure and functioning of the human brain to 
process information in the same way (Haykin, 2009). They 
create a system that learns from examples and adapt to 
new data, just as a human learns from experience. Math-
ematical models of neural networks use nodes or neurons 
connected to each other in a certain way to transmit and 
transform signals (Figure 1). These models are widely used 
in various industries to solve the problems of classification, 
prediction, etc.

The neuron operation algorithm is based on the fol-
lowing formulas (Equation (1)):
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where i is the number of entries into the layer; j is the 
neuron number in the layer; l is the layer number; xijl is 
the i-th input signal of the j-th neuron in layer l; wijl is the 
weight factor of the i-th entrance of the j-th neuron in 
layer l; NETjl is the NET signal of the j-th neuron in layer 
l; Outjl is the output signal; F is the non-linear activation 
function; θjl is the threshold level of the neuron.

The boosted tree algorithm is a method of learning 
with a teacher. It belongs to the combined machine learn-
ing methods that improve the accuracy of predictions by 
combining several models (Gorunescu, 2011; Wasserman, 
1989). This approach creates a sequence of trees, where 
each subsequent tree is constructed based on the errors 
of previous trees. That is, each tree is trained based on the 
errors made by previous trees, which allows us to reduce 
the overall error of the model gradually. The basic pro-
cess gives weight to misclassified samples so that the next 
tree handles them better. Thus, during each iteration, the 
emphasis is on those samples that are difficult to classify. 
This allows the model to become more accurate gradually. 
Once created, all the trees are combined, and classification 

Figure 1. An artificial neuron model (Haykin, 2009)
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is done by voting or averaging the predictions of individual 
trees. Owing to this approach, the boosted tree algorithm 
is suitable for processing various data types, providing for 
a high-precision classification. This makes it popular for 
many applied problems (Figure 2).

The random forests method uses an ensemble of de-
cisions generated by several decision trees to improve 
the accuracy and stability of predictions. This method 
constructs multiple decision trees during learning and is-
sues the most common class of each individual tree (for 
classification purposes) (Qing & Li, 2024). Random forests 
lower the risk of overtraining and improve the overall per-
formance of the model (Figure 3).

Figure 3. Random forest diagram with M decision trees. 
The final classification is determined by a majority vote 
generated by the results of individual decision trees 
classification (Khozeimeh et al., 2022)

3. Dataset

An analysis of experimental studies on the development 
of polymer composite materials with an epoxy matrix was 
carried out, considering the requirements for the polymer 
matrix, dispersed, and fibrous fillers, both at the stage of 
obtaining the materials and in the operating conditions. 

The use of dispersed and fibrous active fillers in composite 
systems provides regulation of the technological modes 
of formation (Stukhlyak, 1996). This makes it possible to 
increase the physical, mechanical, and thermophysical 
characteristics and regulate the rheological properties of 
polymer composite materials.

The scheme of the epoxy composite is given in Table 1 
(Mykytyshyn, 2002). Epoxy resin ED-20, which has the fol-
lowing positive properties, was chosen as the basis of 
polymer composite materials: high adhesive strength, the 
ability to form at room temperatures, little shrinkage in the 
approval process, and manufacturability when applied to 
the surface of a complex profile. Chromium oxide Cr2O3 
with a particle size of up to 30 μm, aluminum oxide Al2O3 
with a particle size of 30–100 μm, A-175 aerosil with a 
particle size of up to 5 μm were utilized as dispersive fill-
ers, which are the most famous in the creation of polymer 
composite materials with an epoxy matrix (Table 1).

4. Results and discussion

During training, the dataset was divided into two unequal 
parts: a training sample and a test sample. The sample 
contained 16,056 elements, of which 70% were randomly 
selected from all experimental data at different tempera-
tures, and 30% were left to evaluate the prediction qual-
ity. In particular, the 70/30 ratio for splitting the dataset 
into training and testing sets is a widely accepted standard 
in machine learning. Specifically, 70% for the training set 
provides enough data for the model to effectively learn 
to detect patterns, especially in cases where the available 
data is limited, while 30% for the testing set allows for a 
reliable assessment of the model’s performance without 
the risk of overfitting that can arise from insufficient test-
ing data. Thus, the 70/30 ratio is a compromise between 
efficient training of the model and a reliable assessment of 
its accuracy. The thermal conductivity coefficient, the filler 
mass fraction concentration, and temperature were the 
input parameters in the classification of epoxy polymers 
filled with aerosil, γ-aminopropyl aerosil, aluminum oxide, 
and chromium oxide. Figure 4 shows a specific technologi-
cal route for classifying epoxy polymers.

The macro and weighted average (Deng et al., 2018) 
were selected to compare the model classification accu-
racy. Normalized confusion matrices were obtained for 
each method. Figures 5 and 6 show the confusion matri-
ces obtained for the absolute values and the classification 
accuracy, respectively. 

Figure 2. Example of a dataset and the corresponding 
decision tree. Oval nodes are decision nodes, and rectangles 
are leaf nodes (Alpayndin, 2010)

Table 1. The effect of temperature on the temperature coefficient of linear expansion for different fillers (Mykytyshyn, 2002)

Fillers Concentration
Thermal coefficient of linear expansion, a×10–5, К–1

293-323К 323-353К 353-383К

Al2O3 30 8.12 15.34 27.42
Cr2O3 30 7.72 12.76 22.15
Aerosil 2 6.92 10.43 12.44
γ-aminopropyl aerosil 2 5.73 9.16 11.21



Aviation, 2025, 29(1), 22–29 25

Figure 4. Technological path of machine learning methods for classifying epoxy polymers

a) b) c)

Figure 5. Confusion matrices of absolute values obtained by various machine learning methods:  
a) boosted trees, b) random forests, and c) neural networks

a) b) c)

Figure 6. Normalized confusion matrices of obtained by various machine learning methods:  
a) boosted trees, b) random forests, and c) neural networks

They are constructed using machine learning methods. 
The confusion matrix is commonly used to solve classifica-
tion tasks. It can be applied to both binary and multi-class 
classification. Confusion matrices contain counts of the 
predicted and actual values. Using neural networks, epoxy 
polymers filled with chromium oxide were detected to an 
accuracy of 100%. The accuracy of detecting epoxy poly-
mers filled with aluminum oxide and γ-aminopropyl aerosil 
was 99%, and that of detecting epoxy polymers filled with 
aerosil was 96%. Epoxy polymers filled with chromium ox-

ide were often misclassified by the boosted tree method 
as polymers filled with γ-aminopropyl aerosil (about 16% 
of cases). The same is valid for the random forest classi-
fier, which misclassified 29% of epoxy polymers filled with 
chromium oxide as those filled with γ-aminopropyl aerosil. 

The use of machine learning to classify epoxy com-
posites with fillers allowed us to achieve high accuracy for 
each model, in particular, neural networks (99%), which 
is the highest result among the methods used, confirm-
ing their ability to accurately model complex, nonlinear 
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dependencies; boosted trees (93%) are less accurate than 
neural networks, but showed good results due to iterative 
focus on the errors of previous iterations; random forests 
(88%) have the lowest accuracy among the methods used, 
but their resistance to overfitting and noise makes them 
a useful tool for working with large and heterogeneous 
data sets.

In general, the study was conducted with a limited 
amount of experimental data. Neural networks, due to 
their architecture, performed well even with such a sample, 
but in real-world conditions, their accuracy may decrease 
if the database is not expanded. Boosted tree and random 
forest methods showed stable performance with a limited 
sample, which confirms their suitability for such tasks.

The greatest impact on the accuracy of the models 
was the mass fraction of filler, which is a key factor that 
determines the properties of epoxy composites, as well as 
temperature, which is an important parameter that affects 
the behavior of fillers in the matrix and the thermal con-
ductivity coefficient, as it correlates with the type of filler, 
which allows the models to effectively distinguish between 
epoxy composites.

Overall, the results of the study confirmed the effec-
tiveness of using machine learning methods to classify 
epoxy composites, as the algorithms reduce the depend-
ence on lengthy physical experiments. In addition, the 
models are integrated into production lines to monitor 
the properties of epoxy composites in real time. Addition-
ally, the proposed methodology is adapted to other types 
of materials and technologies.

Classification metrics were obtained for each method 
used. Parameters such as precision, recall, F1 scores, and 
support were defined. Tables 2–4 contain classification 
metrics (precision, recall, F1 scores, and support) for each 
class and the whole dataset. In particular, the precision, 
which determines the proportion of correctly classified 
samples among all samples, was calculated. It is the most 
common metric for evaluating classification models. The 
macro average was also calculated, which evaluates the 
model performance for each class separately, giving the 
same weight to each class. In addition, the weighted aver-
age was obtained, which considers the frequency of each 
class, making this metric more suitable for processing un-
balanced datasets.

Table 2. Neural networks

Filler class Precision Metric Recall Metric F1 Score Metric Support

Aerosil 0.99 0.99 0.99 1192
γ-aminopropyl aerosil 0.99 0.99 0.99 1175
Aluminum oxide 1.00 0.96 0.98 1101
Chromium oxide 0.96 1.00 0.98 1348
Accuracy 0.99 4816
Macro average 0.99 0.99 0.99 4816
Weighted average 0.99 0.99 0.99 4816

Table 3. Boosted trees

Filler class Precision Metric Recall Metric F1 Score Metric Support

aerosil 0.97 0.99 0.98 1180
γ-aminopropyl aerosil 0.99 0.97 0.98 1189
aluminum oxide 0.84 0.92 0.88 1172
chromium oxide 0.91 0.84 0.88 1258
Accuracy 0.93 4799
Macro average 0.93 0.93 0.93 4799
Weighted average 0.93 0.93 0.93 4799

Table 4. Random forests

Filler class Precision Metric Recall Metric F1 Score Metric Support

aerosil 0.92 0.91 0.92 1171
γ-aminopropylaerosil 0.91 0.92 0.92 1171
aluminum oxide 0.78 0.99 0.87 1186
chromium oxide 0.99 0.71 0.83 1190
Accuracy 0.88 4718
Macro average 0.90 0.88 0.88 4718
Weighted average 0.90 0.88 0.88 4718
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These metrics make it possible to evaluate the model 
from different perspectives. This is particularly relevant for 
data processing, where classes are of different sizes. In 
general, neural networks rank first among the methods for 
classifying epoxy polymers.

The dependences of the average multinomial deviance 
(MND) on the number of trees in the boosted trees and 
the misclassification rate (MCR) on the number of trees in 
the random forests methods are crucial. It gives us a key 
to understanding how these models operate and how they 
can be improved (Figure 7). In particular, using the optimal 
number of trees in random forest and boosted tree meth-
ods allowed to reduce the average classification error and 
prevent overfitting. 

In the boosted trees method, multinomial deviance is 
a loss function used to assess the performance of clas-
sification models with multiple classes. It measures how 
well the model predicts the probabilities for each class; in 
particular, lower deviance values indicate better model ac-
curacy, whereas higher deviance indicates that the model’s 
predictions are less accurate or poorly approximates the 
class probabilities. It is known that, in the initial stages, the 
plot generally shows a decrease in average deviance as the 
number of trees grows. This means the model is learning 
and increasingly distinguishing between the classes, pre-
dicting probabilities more accurately. After a certain num-
ber of trees, deviance stabilizes or reaches a minimum. 
This point likely represents optimal model complexity, 
where adding more trees no longer improves the accuracy 
on the training data. If deviance increases after reaching 
a minimum, this may indicate overfitting. In this case, the 
model becomes overly tailored to the training data and 
generalizes less effectively to new data. In general, this 
plot helps to choose the optimal number of trees in a 

boosted trees model to achieve the lowest average multi-
nomial deviance, minimizing the risk of overfitting.

In the random forest method, the misclassification rate 
is the proportion of incorrectly classified examples out of 
the total examples. It reflects the model’s accuracy: a lower 
misclassification rate indicates better classification perfor-
mance. In the beginning, with a small number of trees, 
the misclassification rate is generally higher because the 
model doesn’t have enough trees to reduce variance and 
random errors effectively. As the number of trees increas-
es, the misclassification rate gradually decreases and even-
tually reaches a point where it stabilizes or only decreases 
marginally. This indicates that additional trees no longer 
improve model performance significantly, and the model 
has reached optimal generalization. Unlike some other al-
gorithms, random forests rarely overfit as the number of 
trees grows. Thus, the misclassification rate usually does 
not increase after stabilization. In general, the plot helps 
to identify the optimal number of trees, after which add-
ing more trees provides minimal or no improvement in 
the misclassification rate. This allows one to avoid exces-
sive computation and enhance the model’s speed without 
sacrificing accuracy.

Generally, the predicted data agrees with the experi-
mental ones (Stukhlyak et al., 2000). Table 5 summarizes 
the parameters of the neural networks constructed.

5. Conclusions

The task of classifying basalt-reinforced epoxy composites 
for aircrafts filled with aerosil, γ-aminopropyl aerosil, alu-
minum oxide, and chromium oxide, respectively, is solved 
by machine learning methods, such as neural networks, 
boosted trees, and random forests. 

Figure 7. Performance metrics dependence on the number of trees: a – average MND in boosted trees, b – MCR in 
random forests

Table 5. Neural networks parameters

Neural network Learning algorithm Error function Hidden activation 
function

Output activation 
function

MLP 3-9-4 BFGS Entropy Tanh Softmax



28 O. Yasniy et al. Artificial intelligence as applied to classifying epoxy composites for aircraft

A comparative analysis of the accuracy of various 
machine learning models for classifying epoxy compos-
ites with fillers such as aerosil, γ-aminopropyl- aerosil, 
aluminum oxide, and chromium oxide was performed. 
The model parameters were optimized, which allowed to 
achieve high prediction accuracy (over 88%), even with a 
limited amount of experimental data.

The results of the study can be integrated into the pro-
cesses of automated quality control of epoxy composites 
for aerospace structures. These results are a significant 
step in the implementation of intelligent data analysis 
systems in materials science.

The use of neural networks provided the highest clas-
sification accuracy of 99%, which indicates their ability 
to model complex nonlinear relationships between the 
properties of epoxy composites. Boosted tree and random 
forest methods achieved an accuracy of 93% and 88%, 
respectively, providing high noise tolerance and interpret-
ability of the results.
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